Functions of bounded variation are most important in many fields of mathe¬matics. This thesis investigates spaces of functions of bounded variation with one variable of various types, compares them to other classical function spaces and reveals natural “habitats” of BV-functions. New and almost comprehensive results concerning mapping properties like surjectivity and injectivity, several kinds of continuity and compactness of both linear and nonlinear operators bet¬ween such spaces are given. A new theory about different types of convergence of sequences of such operators is presented in full detail and applied to a new proof for the continuity of the composition operator in the classical BV-space. The abstract results serve as ingredients to solve Hammerstein and Volterra in¬tegral equations using fixed point theory. Many criteria guaranteeing the exis¬tence and uniqueness of solutions in BV-type spaces are given and later applied to solve boundary and initial value problems in a nonclassical setting. A big emphasis is put on a clear and detailed discussion. Many pictures and syn¬optic tables help to visualize and summarize the most important ideas. Over 160 examples and counterexamples illustrate the many abstract results and how de¬licate some of them are.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.