The heterogeneous structure of synaptic vesicles isolated from rat brain is investigated considering solution small-angle x-ray scattering data in combination with data obtained by cryogenic electron microscopy, dynamic light scattering and biochemical analysis. Overall low resolution structural models of the entire functional synaptic vesicle are proposed, elucidating details on the density profile of the membrane, including contributions from the lipids and the proteins, as well as addressing the average conformation and overall lateral organization of proteins in micro-domains on the average synaptic vesicle under quasi-physiological conditions. Entropic contributions to free energy due to possible protein cluster formation and disintegration on the synaptic vesicle are investigated. Further, cell free fusion systems are characterized employing dynamic light scattering and applicability of small-angle x-ray scattering is considered for investigating membrane fusion processes."--Open Textbook Library.
The heterogeneous structure of synaptic vesicles isolated from rat brain is investigated considering solution small-angle x-ray scattering data in combination with data obtained by cryogenic electron microscopy, dynamic light scattering and biochemical analysis. Overall low resolution structural models of the entire functional synaptic vesicle are proposed, elucidating details on the density profile of the membrane, including contributions from the lipids and the proteins, as well as addressing the average conformation and overall lateral organization of proteins in micro-domains on the average synaptic vesicle under quasi-physiological conditions. Entropic contributions to free energy due to possible protein cluster formation and disintegration on the synaptic vesicle are investigated. Further, cell free fusion systems are characterized employing dynamic light scattering and applicability of small-angle x-ray scattering is considered for investigating membrane fusion processes."--Open Textbook Library.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.