The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers. The fundamental tools to obtain these results are provided by some new Riemann-Stieltjes integral inequalities of continuous integrands on the complex unit circle and integrators of bounded variation. Features All the results presented are completely proved and the original references where they have been firstly obtained are mentioned Intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, as well as by postgraduate students and scientists applying inequalities in their specific areas Provides new emphasis to mathematical inequalities, approximation theory and numerical analysis in a simple, friendly and well-digested manner. About the Author Silvestru Sever Dragomir is Professor and Chair of Mathematical Inequalities at the College of Engineering & Science, Victoria University, Melbourne, Australia. He is the author of many research papers and several books on Mathematical Inequalities and their Applications. He also chairs the international Research Group in Mathematical Inequalities and Applications (RGMIA). For details, see https://rgmia.org/index.php.
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling.The authors
The main aim of this book is to present several results related to functions of unitary operators on complex Hilbert spaces obtained, by the author in a sequence of recent research papers. The fundamental tools to obtain these results are provided by some new Riemann-Stieltjes integral inequalities of continuous integrands on the complex unit circle and integrators of bounded variation. Features All the results presented are completely proved and the original references where they have been firstly obtained are mentioned Intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, as well as by postgraduate students and scientists applying inequalities in their specific areas Provides new emphasis to mathematical inequalities, approximation theory and numerical analysis in a simple, friendly and well-digested manner. About the Author Silvestru Sever Dragomir is Professor and Chair of Mathematical Inequalities at the College of Engineering & Science, Victoria University, Melbourne, Australia. He is the author of many research papers and several books on Mathematical Inequalities and their Applications. He also chairs the international Research Group in Mathematical Inequalities and Applications (RGMIA). For details, see https://rgmia.org/index.php.
Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski’s type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.
The aim of this book is to present results related to Kato's famous inequality for bounded linear operators on complex Hilbert spaces obtained by the author in a sequence of recent research papers. As Linear Operator Theory in Hilbert spaces plays a central role in contemporary mathematics, with numerous applications in fields including Partial Differential Equations, Approximation Theory, Optimization Theory, and Numerical Analysis, the volume is intended for use by both researchers in various fields and postgraduate students and scientists applying inequalities in their specific areas. For the sake of completeness, all the results presented are completely proved and the original references where they have been firstly obtained are mentioned.
The main aim of this book is to present recent results concerning inequalities of the Jensen, Čebyšev and Grüss type for continuous functions of bounded selfadjoint operators on complex Hilbert spaces. In the introductory chapter, the author portrays fundamental facts concerning bounded selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive selfadjoint operators as well as some results for the spectrum of this class of operators are presented. This text introduces the reader to the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators as well as the step functions of selfadjoint operators. The spectral decomposition for this class of operators, which play a central role in the rest of the book and its consequences are introduced. At the end of the chapter, some classical operator inequalities are presented as well. Recent new results that deal with different aspects of the famous Jensen operator inequality are explored through the second chapter. These include but are not limited to the operator version of the Dragomir-Ionescu inequality, the Slater type inequalities for operators and its inverses, Jensen’s inequality for twice differentiable functions whose second derivatives satisfy some upper and lower bound conditions and Jensen’s type inequalities for log-convex functions. Hermite-Hadamard’s type inequalities for convex functions and the corresponding results for operator convex functions are also presented. The Čebyšev, (Chebyshev) inequality that compares the integral/discrete mean of the product with the product of the integral/discrete means is famous in the literature devoted to Mathematical Inequalities. The sister inequality due to Grüss which provides error bounds for the magnitude of the difference between the integral mean of the product and the product of the integral means has also attracted much interest since it has been discovered in 1935 with more than 200 papers published so far. The last part of the book is devoted to the operator versions of these famous results for continuous functions of selfadjoint operators on complex Hilbert spaces. Various particular cases of interest and related results are presented as well. This book is intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Aimed toward researchers, postgraduate students, and scientists in linear operator theory and mathematical inequalities, this self-contained monograph focuses on numerical radius inequalities for bounded linear operators on complex Hilbert spaces for the case of one and two operators. Students at the graduate level will learn some essentials that may be useful for reference in courses in functional analysis, operator theory, differential equations, and quantum computation, to name several. Chapter 1 presents fundamental facts about the numerical range and the numerical radius of bounded linear operators in Hilbert spaces. Chapter 2 illustrates recent results obtained concerning numerical radius and norm inequalities for one operator on a complex Hilbert space, as well as some special vector inequalities in inner product spaces due to Buzano, Goldstein, Ryff and Clarke as well as some reverse Schwarz inequalities and Grüss type inequalities obtained by the author. Chapter 3 presents recent results regarding the norms and the numerical radii of two bounded linear operators. The techniques shown in this chapter are elementary but elegant and may be accessible to undergraduate students with a working knowledge of operator theory. A number of vector inequalities in inner product spaces as well as inequalities for means of nonnegative real numbers are also employed in this chapter. All the results presented are completely proved and the original references are mentioned.
This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
Drawing on the authors' research work from the last ten years, Mathematical Inequalities: A Perspective gives readers a different viewpoint of the field. It discusses the importance of various mathematical inequalities in contemporary mathematics and how these inequalities are used in different applications, such as scientific modeling.The authors
This book is a self-contained advanced monograph on inequalities involving the numerical radius of bounded linear operators acting on complex Hilbert spaces. The study of numerical range and numerical radius has a long and distinguished history starting from the Rayleigh quotients used in the 19th century to nowadays applications in quantum information theory and quantum computing. This monograph is intended for use by both researchers and graduate students of mathematics, physics, and engineering who have a basic background in functional analysis and operator theory. The book provides several challenging problems and detailed arguments for the majority of the results. Each chapter ends with some notes about historical views or further extensions of the topics. It contains a bibliography of about 180 items, so it can be used as a reference book including many classical and modern numerical radius inequalities.
The aim of this volume is to introduce and exchange recent new topics on the areas of inequality theory and their applications dealing in pure and applied mathematics.
This research monograph, deals with identities and inequalities relating to series and their application. This is the first volume of research monographs on advances in inequalities for series. All of the papers in this volume have been fully peer reviewed. Some papers in this volume appear in print for the first time, detailing many technical results and some other papers offer a review of a number of recently published results. The papers appear in author alphabetical order and not in mathematics subject classification. There are fifteen diverse papers in this volume each with its own speciality. An important issue in many applications of Probability Theory is finding an approximate measure of distance, or discrimination, between two probability distributions. A number of divergence measures for this purpose have been proposed.
Inequalities of Ostrowski and Trapezoidal Type for Functions of Selfadjoint Operators on Hilbert Spaces presents recent results concerning Ostrowski and Trapezoidal type inequalities for continuous functions of bounded Selfadjoint operators on complex Hilbert spaces. The first chapter recalls some fundamental facts concerning bounded Selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive Selfadjoint operators as well as some results for the spectrum of this class of operators are presented. The author also introduces and explores the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators that will play a central role throughout the book. The following chapter is devoted to the Ostrowski’s type inequalities, which provide sharp error estimates in approximating the value of a function by its integral mean and can be used to obtain a priory error bounds for different quadrature rules in approximating the Riemann integral by different Riemann sums. The author also presents recent results extending Ostrowski inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. The final chapter illustrates recent results obtained in extending trapezoidal type inequality in various directions for continuous functions of selfadjoint operators in complex Hilbert spaces. Applications for mid-point inequalities and some elementary functions of operators as also provided. This book is intended for use by researchers in various fields of Linear Operator Theory and Mathematical Inequalities. As well as postgraduate students and scientists applying inequalities in their specific areas.
The main aim of this book is to present recent results concerning inequalities of the Jensen, Čebyšev and Grüss type for continuous functions of bounded selfadjoint operators on complex Hilbert spaces. In the introductory chapter, the author portrays fundamental facts concerning bounded selfadjoint operators on complex Hilbert spaces. The generalized Schwarz’s inequality for positive selfadjoint operators as well as some results for the spectrum of this class of operators are presented. This text introduces the reader to the fundamental results for polynomials in a linear operator, continuous functions of selfadjoint operators as well as the step functions of selfadjoint operators. The spectral decomposition for this class of operators, which play a central role in the rest of the book and its consequences are introduced. At the end of the chapter, some classical operator inequalities are presented as well. Recent new results that deal with different aspects of the famous Jensen operator inequality are explored through the second chapter. These include but are not limited to the operator version of the Dragomir-Ionescu inequality, the Slater type inequalities for operators and its inverses, Jensen’s inequality for twice differentiable functions whose second derivatives satisfy some upper and lower bound conditions and Jensen’s type inequalities for log-convex functions. Hermite-Hadamard’s type inequalities for convex functions and the corresponding results for operator convex functions are also presented. The Čebyšev, (Chebyshev) inequality that compares the integral/discrete mean of the product with the product of the integral/discrete means is famous in the literature devoted to Mathematical Inequalities. The sister inequality due to Grüss which provides error bounds for the magnitude of the difference between the integral mean of the product and the product of the integral means has also attracted much interest since it has been discovered in 1935 with more than 200 papers published so far. The last part of the book is devoted to the operator versions of these famous results for continuous functions of selfadjoint operators on complex Hilbert spaces. Various particular cases of interest and related results are presented as well. This book is intended for use by both researchers in various fields of Linear Operator Theory and Mathematical Inequalities, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
The theory of Hilbert spaces plays a central role in contemporary mathematics with numerous applications for Linear Operators, Partial Differential Equations, in Nonlinear Analysis, Approximation Theory, Optimisation Theory, Numerical Analysis, Probability Theory, Statistics and other fields. The Schwarz, triangle, Bessel, Gram and most recently, Grüss type inequalities have been frequently used as powerful tools in obtaining bounds or estimating the errors for various approximation formulae occurring in the domains mentioned above. Therefore, any new advancement related to these fundamental facts will have a flow of important consequences in the mathematical fields where these inequalities have been used before.
The aim of this book is to present results related to Kato's famous inequality for bounded linear operators on complex Hilbert spaces obtained by the author in a sequence of recent research papers. As Linear Operator Theory in Hilbert spaces plays a central role in contemporary mathematics, with numerous applications in fields including Partial Differential Equations, Approximation Theory, Optimization Theory, and Numerical Analysis, the volume is intended for use by both researchers in various fields and postgraduate students and scientists applying inequalities in their specific areas. For the sake of completeness, all the results presented are completely proved and the original references where they have been firstly obtained are mentioned.
Inequalities for hermitian forms -- Schwarz related inequalities -- Reverses for the triangle inequality -- Reverses for the continous triangle inequality -- Reverses of the cbs and heisenberg inequalities -- Other inequalities in inner product spaces
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.