A must-have reference on sustainable organic energy storage systems Organic electrode materials have the potential to overcome the intrinsic limitations of transition metal oxides as cathodes in rechargeable batteries. As promising alternatives to metal-based batteries, organic batteries are renewable, low-cost, and would enable a greener rechargeable world. Rechargeable Organic Batteries is an up-to-date reference and guide to the next generation of sustainable organic electrodes. Focused exclusively on organic electrode materials for rechargeable batteries, this unique volume provides comprehensive coverage of the structures, advantages, properties, reaction mechanisms, and performance of various types of organic cathodes. In-depth chapters examine carbonyl-, organosulfur-, radical-, and organometallic complexes, as well as polymer-based active materials for electrochemical energy storage (EES) technologies. Throughout the book, possible application cases and potential challenges are discussed in detail. Presents advanced characterization methods for verifying redox mechanisms of organic materials Examines recent advances in carbonyl-based small-molecule cathode materials in battery systems including lithium-ion, sodium-ion, and aqueous zinc-ion batteries Introduces organosulfide-inorganic composite cathodes with high electrical conductivity and fast reaction kinetics Outlines research progress on radical electrode materials, polymer-based organic cathode materials, and the development of all-organic batteries Summarizes the synthesis processes, redox mechanisms, and electrochemical performance of different kinds of organic anode materials for metal-ion batteries Featuring a general introduction to organic batteries, including a discussion of their necessity and advantages, Rechargeable Organic Batteries is essential reading for electrochemists, materials scientists, organic chemists, physical chemists, and solid-state chemists working in the field.
Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.
This book comprehensively covers the topics of origin and distribution, evolution and types, regional and global importance, biodiversity conservation, plant-soil interfaces, ecosystem functions and services, social-ecological systems, climate change adaptations, land degradation and restoration, grazing management and pastoral production, and sustainable future of the grasslands on the Qinghai-Tibetan Plateau (QTP), which is a globally unique eco-region called the "Roof of the World" because of its high elevation, “Third Pole on Earth" because of its alpine environment and the "Water Tower in Asia" because of its headwater location. The grassland ecosystem covers above 60% of QTP, which is about 2.5 million km2, 1/4 of Chinese total territorial lands. The grassland ecosystem of the QTP (the Third Pole) is an important part of the palaearctic region, which features alpine cover and low oxygen. The Third Pole's grasslands not only provide important ecosystem functions such as biodiversity conservation, carbon storage, water resource regulation, climate control, and natural disaster mitigation at a global scale, but also provide critical ecosystem services such as pastoral production, cultural inheritance, and tourism and recreation at local and regional scales. The purposes of this monograph are to address the following questions: (1) What are the special features of the Third Pole's grasslands? (2) How have climate changes and human activities changed the structures and functions of the Third Pole's grasslands? (3) How can we cope with land degradation and climate change through innovative restoration and protective actions for Third Pole's grasslands? And (4) How can we promote the sustainable development of social-ecological systems of the Third Pole's grasslands through best management practices including grazing? The goal of this book is to attract the attention of international audiences to realize the importance of the Third Pole’s grasslands, and to call for the actions of global communities to effectively protect and sustainably use the Third Pole's grasslands. This book can be served as textbooks, teaching materials and documentaries for different audiences. The target audiences include students, teachers, researchers, policy makers, planners, government officials, and NGOs in agricultural, environmental and natural resources sectors.
This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.
This book mainly discusses the background of e-commerce, the basic knowledge of e-commerce, the basic models of e-commerce, the basic principles of e-commerce and the cases of e-commerce. This book has formed a theoretical system of e-commerce with a clear integration boundary. The introduction of the systematic theory is guided by the background of e-commerce, centered on the model of e-commerce, paved with the principles of e-commerce and integrated with the cutting-edge cases. This book defines the basic concepts, models and principle of e-commerce in the form of mathematical analysis and analyzes the basic theory of e-commerce from the perspective of mathematical model. This enables readers to form an abstract understanding of the connotation and extension of e-commerce. It establishes a knowledge system with the background of social ecology, engineering ecology and innovative ecology, taking the models of e-commerce as the core, the principles of e-commerce as the process, the architecture of e-commerce as the platform and the operation and management of e-commerce as the means to integrate the knowledge into application. This book uses case study to comprehensively analyze and apply the knowledge system involved in e-commerce, combining theoretical research with engineering research. Through this book, readers can systematically master all kinds of theories involved in e-commerce. This book aims at different professional and diverse reader groups. It can be used as the basic books for students of various e-commerce-related specialties.
This book systematically presents the concept, history, implementation, theory system and basic methods of pulsar and space flight, illustrating the characteristics of pulsars. It also describes the classification of spacecraft navigation systems and the autonomous navigation technologies, as well as X-ray pulsar-based navigation systems (XPNAV) and discusses future navigation satellite systems in detail.
In this book, we present our systematic investigations into consensus in multi-agent systems. We show the design and analysis of various types of consensus protocols from a multi-agent perspective with a focus on min-consensus and its variants. We also discuss second-order and high-order min-consensus. A very interesting topic regarding the link between consensus and path planning is also included. We show that a biased min-consensus protocol can lead to the path planning phenomenon, which means that the complexity of shortest path planning can emerge from a perturbed version of min-consensus protocol, which as a case study may encourage researchers in the field of distributed control to rethink the nature of complexity and the distance between control and intelligence. We also illustrate the design and analysis of consensus protocols for nonlinear multi-agent systems derived from an optimal control formulation, which do not require solving a Hamilton-Jacobi-Bellman (HJB) equation. The book was written in a self-contained format. For each consensus protocol, the performance is verified through simulative examples and analyzed via mathematical derivations, using tools like graph theory and modern control theory. The book’s goal is to provide not only theoretical contributions but also explore underlying intuitions from a methodological perspective.
This book is closely related to the energy conservation problem of rail transport systems, focusing on reducing the energy consumption of train operation. The system process of train operation is analyzed and the relationship between train operation and energy consumption is introduced. The fundamental theories, modelling and application of technologies for energy-efficient train driving are presented, discussing timely topics such as energy-efficient train control and timetabling, integrated timetabling and regenerative braking, and maximizing regenerated energy usage with energy storage systems. In addition, the modelling and application of a traction power simulation platform is introduced, to calculate the detailed energy flow over a railway network. The book is enriched with a set of practical examples to illustrate the performance of the proposed methods in improving energy efficiency of both urban and long-distance trains. Overall, the book provides a timely guide to professionals in the railway industry, and to researchers and graduate students in transport, electrical and control engineering.
This book applies a novel theory of ‘unbalanced responsiveness’ to the issue of economic inequality in China to better understand the relationship between authoritarian regimes and their citizens. The book highlights how the Chinese Communist Party (CCP) has responded to dissatisfaction over inequality, with both propaganda and policy, revealing how the responsiveness in these two arenas is unbalanced. Arguing that while CCP propaganda claims to reduce inequality, its welfare programs have been stratified, unfair, and regressive, aggravating instead of alleviating inequalities. By utilizing data from multiple national surveys, the book reveals that the discrepancy between propaganda and policy ultimately generates further dissatisfaction and strong demands for redistribution. The findings of this study indicate how unmitigated and prolonged economic inequality could be a real threat to the sustained rule of the CCP regime. Providing a new theory, applicable to authoritarian and especially communist regimes, demonstrated through the lens of China, this book will be a valuable resource to students and scholars of Chinese studies, political science, and public policy.
This is the first book to focus on solving cooperative control problems of multiple robot arms using different centralized or distributed neural network models, presenting methods and algorithms together with the corresponding theoretical analysis and simulated examples. It is intended for graduate students and academic and industrial researchers in the field of control, robotics, neural networks, simulation and modelling.
This book explores machine learning (ML) defenses against the many cyberattacks that make our workplaces, schools, private residences, and critical infrastructures vulnerable as a consequence of the dramatic increase in botnets, data ransom, system and network denials of service, sabotage, and data theft attacks. The use of ML techniques for security tasks has been steadily increasing in research and also in practice over the last 10 years. Covering efforts to devise more effective defenses, the book explores security solutions that leverage machine learning (ML) techniques that have recently grown in feasibility thanks to significant advances in ML combined with big data collection and analysis capabilities. Since the use of ML entails understanding which techniques can be best used for specific tasks to ensure comprehensive security, the book provides an overview of the current state of the art of ML techniques for security and a detailed taxonomy of security tasks and corresponding ML techniques that can be used for each task. It also covers challenges for the use of ML for security tasks and outlines research directions. While many recent papers have proposed approaches for specific tasks, such as software security analysis and anomaly detection, these approaches differ in many aspects, such as with respect to the types of features in the model and the dataset used for training the models. In a way that no other available work does, this book provides readers with a comprehensive view of the complex area of ML for security, explains its challenges, and highlights areas for future research. This book is relevant to graduate students in computer science and engineering as well as information systems studies, and will also be useful to researchers and practitioners who work in the area of ML techniques for security tasks.
This book mainly shows readers how to calibrate and control robots. In this regard, it proposes three control schemes: an error-summation enhanced Newton algorithm for model predictive control; RNN for solving perturbed time-varying underdetermined linear systems; and a new joint-drift-free scheme aided with projected ZNN, which can effectively improve robot control accuracy. Moreover, the book develops four advanced algorithms for robot calibration – Levenberg-Marquarelt with diversified regularizations; improved covariance matrix adaptive evolution strategy; quadratic interpolated beetle antennae search algorithm; and a novel variable step-size Levenberg-Marquardt algorithm – which can effectively enhance robot positioning accuracy. In addition, it is exceedingly difficult for experts in other fields to conduct robot arm calibration studies without calibration data. Thus, this book provides a publicly available dataset to assist researchers from other fields in conducting calibration experiments and validating their ideas. The book also discusses six regularization schemes based on its robot error models, i.e., L1, L2, dropout, elastic, log, and swish. Robots’ positioning accuracy is significantly improved after calibration. Using the control and calibration methods developed here, readers will be ready to conduct their own research and experiments.
This book discusses on the Impact Mechanism of Carbon Tariffs and Carbon Labeling on Agri-trade and Emissions Reduction. Specifically, (1) it has analyzed the effect of carbon tariffs on Agri-trade and emissions reduction based on the hypothesis of carbon factor movement and the game theory, and built a Theoretical Model for carbon labeling to lead low-carbon behavior based on the international practices; (2) it simulated the impact of carbon tariffs on world's macro-economy and Agri-trade in China and worldwide using the Global Trade Analysis Project (GTAP) model; (3) it has made the first attempt to see the differences of willingness to pay for low-carbon products, purchasing behavior and expectations for government subsidies between consumers of different regions at different levels in China, by adopting questionnaire survey and scenario experiment; and (4) it has done an empirical analysis of carbon labels’ effect on low carbon consumption behavior based on Structural Equation Modeling (SEM) and experimental observation data with large samples. Finally, it has proposed policy recommendations based on the findings of the above theoretic and empirical studies.
In this book, the authors focus on three aspects related to the development of articulated agents: presenting an overview of high-level control algorithms for intelligent decision-making of articulated agents, experimental study of the properties of soft agents as the end-effector of articulated agents, and accurate management of low-level torque-control loop to accurately control the articulated agents. This book summarizes recent advances related to articulated agents. The motive behind the book is to trigger theoretical and practical research studies related to articulated agents.
The book focuses on the transient modelling, stability analysis and control of power electronic systems, since these systems face severe safe operation problems the during transient period. It discusses both theoretical analysis and practical applications, highlighting the transient characteristics of converters with different control strategies, and proposes transient modelling and model reduction methods. Furthermore, it classifies the transient stability problems of the system to help the readers gain an understanding of the basic theoretical methods for analysing the power electronic system, at the same time providing sufficient detail to enable engineers to design such systems. Comprehensively describing theoretical analyses, ranging from system modelling and stability analysis to transient control, the book is a valuable resource for researchers, engineers and graduate students in fields of transient modelling, stability analysis and control of power electronic systems.
This book summarizes Chinese banks’ achievements in global markets and examines the differences between Chinese and foreign banks. It also explores the future roadmap of internationalization and the risks involved in the process, in order to provide reference resource for Chinese banks. Based on the CBII (Chinese Bank Internationalization Index), which was first released in 2015, the book introduces the Banks’ Internationalization Index (“BII”) and expands the BII by examining two groups of data, including the number of overseas branches, overseas assets and revenue. In addition it analyzes representative Chinese banks’ internationalization, using 16 of the Global Systemically Important Banks (G-SIBs) as benchmarks.
Density Matrix Renormalization Group (DMRG)-based Approaches in Computational Chemistry outlines important theories and algorithms of DMRG-based approaches and explores their use in computational chemistry. Beginning with an introduction to DMRG and DMRG-based approaches, the book goes on to discuss the key theories and applications of DMRG, from DMRG for semi-empirical and ab-initio quantum chemistry, to DMRG in embedded environments, frequency spaces and quantum dynamics. Drawing on the experience of its expert authors, sections detail recent ideas and key developments, providing an up-to-date view of current developments in the field for students and researchers in quantum chemistry. - Provides an expertly-curated, consolidated overview of research in the field - Includes exercises that support learning and link theory to practice - Outlines key theories and algorithms for computational chemistry applications
As the sister book to “Introduction to Multicopter Design and Control,” published by Springer in 2017, this book focuses on using a practical process to help readers to deepen their understanding of multicopter design and control. Novel tools with tutorials on multicopters are presented, which can help readers move from theory to practice. Experiments presented in this book employ: (1) The most widely-used flight platform – multicopters – as a flight platform; (2) The most widely-used flight pilot hardware – Pixhawk – as a control platform; and (3) One of the most widely-used programming languages in the field of control engi-neering – MATLAB + Simulink – as a programming language. Based on the current advanced development concept Model-Based Design (MBD)process, the three aspects mentioned above are closely linked. Each experiment is implemented in MATLAB and Simulink, and the numerical simula-tion test is carried out on a built simulation platform. Readers can upload the controller to the Pixhawk autopilot using automatic code generation technology and form a closed loop with a given real-time simulator for Hardware-In-the-Loop (HIL) testing. After that, the actual flight with the Pixhawk autopilot can be performed. This is by far the most complete and clear guide to modern drone fundamentals I’ve seen.It covers every element of these advanced aerial robots and walks through examples and tutorials based on the industry’s leading open-source software and tools. Read this book, and you’ll be well prepared to work at the leading edge of this exciting new industry. Chris Anderson, CEO 3DR and Chairman, the Linux Foundation’s Dronecode Project The development of a multicopter and its applications is very challenging in the robotics area due to the multidomain knowledge involved. This book systematically addresses the design, simulation and implementation of multicopters with the industrial leading workflow – Model-Based Design, commonly used in the automotive and aero-defense industries. With this book, researchers and engineers can seamlessly apply the concepts, workflows, and tools in other engineering areas, especially robot design and robotics ap-plication development. Dr. Yanliang Zhang, Founder of Weston Robot, EX-product Manager of Robotics System Toolbox at the MathWorks
A must-have reference on sustainable organic energy storage systems Organic electrode materials have the potential to overcome the intrinsic limitations of transition metal oxides as cathodes in rechargeable batteries. As promising alternatives to metal-based batteries, organic batteries are renewable, low-cost, and would enable a greener rechargeable world. Rechargeable Organic Batteries is an up-to-date reference and guide to the next generation of sustainable organic electrodes. Focused exclusively on organic electrode materials for rechargeable batteries, this unique volume provides comprehensive coverage of the structures, advantages, properties, reaction mechanisms, and performance of various types of organic cathodes. In-depth chapters examine carbonyl-, organosulfur-, radical-, and organometallic complexes, as well as polymer-based active materials for electrochemical energy storage (EES) technologies. Throughout the book, possible application cases and potential challenges are discussed in detail. Presents advanced characterization methods for verifying redox mechanisms of organic materials Examines recent advances in carbonyl-based small-molecule cathode materials in battery systems including lithium-ion, sodium-ion, and aqueous zinc-ion batteries Introduces organosulfide-inorganic composite cathodes with high electrical conductivity and fast reaction kinetics Outlines research progress on radical electrode materials, polymer-based organic cathode materials, and the development of all-organic batteries Summarizes the synthesis processes, redox mechanisms, and electrochemical performance of different kinds of organic anode materials for metal-ion batteries Featuring a general introduction to organic batteries, including a discussion of their necessity and advantages, Rechargeable Organic Batteries is essential reading for electrochemists, materials scientists, organic chemists, physical chemists, and solid-state chemists working in the field.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.