This book features comprehensive explanations from the classical theory of high-energy particle interactions with matter to their use for a novel nanofabrication technique for various organic soft materials. Potential readers include scientists and engineers in both academia and industry, as well as students of materials science, nanotechnology, and nuclear power engineering. Readers will learn about the historical research background of radiation chemistry and interactions of an accelerated particle with matter, and then move on to recent research topics having to do with nanofabrication of soft materials by using single charged particles with high energy. Target materials of the highlighted novel technique include proteins, thermo-responsive and photo-responsive polymers, semiconducting polymers, and even small organic molecules. The descriptions of these various newly developed nanomaterials will interest a broad spectrum of readers and provide them with a new perspective. The many conceptual illustrations and microscopic images of nanomaterials that are included will help readers to easily understand the contents of the book.
All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.
This book presents the new discovery of the origin of turbulence from Navier–Stokes equations. The fully developed turbulence is found to be composed of singularities of flow field. The mechanisms of flow stability and turbulent transition are described using the energy gradient theory, which states all the flow instability and breakdown resulted from the gradient of the total mechanical energy normal to the flow direction. This approach is universal for flow instability in Newtonian flow and non-Newtonian flow. The theory has been used to solve several problems, such as plane and pipe Poiseuille flows, plane Couette flow, Taylor–Couette flow, flows in straight coaxial annulus, flows in curved pipes and ducts, thermal convection flow, viscoelastic flow, and magnet fluid flow, etc. The theory is in agreement with results from numerical simulations and experiments. The analytical method used in this book is novel and is different from the traditional approaches. This book includes the fundamental basics of flow stability and turbulent transition, the essentials of the energy gradient theory, and the applications of the theory to several practical problems. This book is suitable for researchers and graduate students.
A unique, comprehensive reference that integrates the molecular, cellular, physiological, pathological, and engineering aspects of regenerative processes Bioregenerative engineering is an emerging discipline based on applying engineering principles and technologies to regenerative medicine. It induces, modulates, enhances, and/or controls regenerative processes by using engineering approaches to improve the restoration of the structure and function of disordered or lost molecules, cells, tissues, and organs. This reference systematically summarizes bioregenerative engineering principles, technologies, and current research to help scientists understand biological regeneration and design new therapeutic strategies. Succinct and well-organized with a detailed table of contents to help readers pinpoint information, this reference: * Provides the fundamental theory and principles of molecular, cellular, and tissue regenerative engineering concurrently with experimental approaches * Presents the foundations of bioregenerative engineering, encompassing the molecular basis, the regulatory mechanism of regeneration, and the developmental aspects * Combines molecular and cell biology with potential applications * Addresses experimental design, methods, and modeling at the molecular/cellular/tissue levels * Covers the general mechanisms and technologies of bioregenerative engineering, as well as its application to the treatment of human disorders * Discusses the engineering tests and therapies for major organ systems Presenting an in-depth introduction to the biological and engineering aspects of the field and an up-to-date overview of current research, this is a one-of-a-kind resource for scientific researchers and medical practitioners, as well as for graduate and undergraduate students in biomedical engineering, bioengineering, chemical engineering, molecular biology, and cell biology.
This book features comprehensive explanations from the classical theory of high-energy particle interactions with matter to their use for a novel nanofabrication technique for various organic soft materials. Potential readers include scientists and engineers in both academia and industry, as well as students of materials science, nanotechnology, and nuclear power engineering. Readers will learn about the historical research background of radiation chemistry and interactions of an accelerated particle with matter, and then move on to recent research topics having to do with nanofabrication of soft materials by using single charged particles with high energy. Target materials of the highlighted novel technique include proteins, thermo-responsive and photo-responsive polymers, semiconducting polymers, and even small organic molecules. The descriptions of these various newly developed nanomaterials will interest a broad spectrum of readers and provide them with a new perspective. The many conceptual illustrations and microscopic images of nanomaterials that are included will help readers to easily understand the contents of the book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.