We live in a noisy world! In all applications (telecommunications, hands-free communications, recording, human-machine interfaces, etc.) that require at least one microphone, the signal of interest is usually contaminated by noise and reverberation. As a result, the microphone signal has to be "cleaned" with digital signal processing tools before it is played out, transmitted, or stored. This book is about speech enhancement. Different well-known and state-of-the-art methods for noise reduction, with one or multiple microphones, are discussed. By speech enhancement, we mean not only noise reduction but also dereverberation and separation of independent signals. These topics are also covered in this book. However, the general emphasis is on noise reduction because of the large number of applications that can benefit from this technology. The goal of this book is to provide a strong reference for researchers, engineers, and graduate students who are interested in the problem of signal and speech enhancement. To do so, we invited well-known experts to contribute chapters covering the state of the art in this focused field. TOC:Introduction.- Study of the Wiener Filter for Noise Reduction.- Statistical Methods for the Enhancement of Noisy Speech.- Single- und Multi-Microphone Spectral Amplitude Estimation Using a Super-Gaussian Speech Model.- From Volatility Modeling of Financial Time-Series to Stochastic Modeling and Enhancement of Speech Signals.- Single-Microphone Noise Suppression for 3G Handsets Based on Weighted Noise Estimation.- Signal Subspace Techniques for Speech Enhancement.- Speech Enhancement: Application of the Kalman Filter in the Estimate-Maximize (EM) Framework.- Speech Distortion Weighted Multichannel Wiener Filtering Techniques for Noise Reduction.- Adpative Microphone Arrays Employing Spatial Quadratic Soft Constraints and Spectral Shaping.- Single-Microphone Blind Dereverberation.- Separation and Dereverberation of Speech Signals with Multiple Microphones.- Frequency-Domain Blind Source Separation.- Subband Based Blind Source Separation.- Real-Time Blind Source Separation for Moving Speech Signals.- Separation of Speech by Computational Auditory Scene Analysis
This monograph presents novel approaches and new results in fundamentals and applications related to rough sets and granular computing. It includes the application of rough sets to real world problems, such as data mining, decision support and sensor fusion. The relationship of rough sets to other important methods of data analysis – Bayes theorem, neurocomputing and pattern recognition is thoroughly examined. Another issue is the rough set based data analysis, including the study of decision making in conflict situations. Recent engineering applications of rough set theory are given, including a processor architecture organization for fast implementation of basic rough set operations and results concerning advanced image processing for unmanned aerial vehicles. New emerging areas of study and applications are presented as well as a wide spectrum of on-going research, which makes the book valuable to all interested in the field of rough set theory and granular computing.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.