This volume is based on the proceedings of the International Workshop on Dynamical Systems and their Applications in Biology held at the Canadian Coast Guard College on Cape Breton Island (Nova Scotia, Canada). It presents a broad picture of the current research surrounding applications of dynamical systems in biology, particularly in population biology. The book contains 19 papers and includes articles on the qualitative and/or numerical analysis of models involving ordinary, partial, functional, and stochastic differential equations. Applications include epidemiology, population dynamics, and physiology. The material is suitable for graduate students and research mathematicians interested in ordinary differential equations and their applications in biology. Also available by Ruan, Wolkowicz, and Wu is Differential Equations with Applications to Biology, Volume 21 in the AMS series Fields Institute Communications.
Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
Several types of differential equations, such as functional differential equation, age-structured models, transport equations, reaction-diffusion equations, and partial differential equations with delay, can be formulated as abstract Cauchy problems with non-dense domain. This monograph provides a self-contained and comprehensive presentation of the fundamental theory of non-densely defined semilinear Cauchy problems and their applications. Starting from the classical Hille-Yosida theorem, semigroup method, and spectral theory, this monograph introduces the abstract Cauchy problems with non-dense domain, integrated semigroups, the existence of integrated solutions, positivity of solutions, Lipschitz perturbation, differentiability of solutions with respect to the state variable, and time differentiability of solutions. Combining the functional analysis method and bifurcation approach in dynamical systems, then the nonlinear dynamics such as the stability of equilibria, center manifold theory, Hopf bifurcation, and normal form theory are established for abstract Cauchy problems with non-dense domain. Finally applications to functional differential equations, age-structured models, and parabolic equations are presented. This monograph will be very valuable for graduate students and researchers in the fields of abstract Cauchy problems, infinite dimensional dynamical systems, and their applications in biological, chemical, medical, and physical problems.
Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using Liapunov-Perron method and following the techniques of Vanderbauwhede et al. in treating infinite dimensional systems, the authors study the existence and smoothness of center manifolds for semilinear Cauchy problems with non-dense domain. As an application, they use the center manifold theorem to establish a Hopf bifurcation theorem for age structured models.
Several types of differential equations, such as functional differential equation, age-structured models, transport equations, reaction-diffusion equations, and partial differential equations with delay, can be formulated as abstract Cauchy problems with non-dense domain. This monograph provides a self-contained and comprehensive presentation of the fundamental theory of non-densely defined semilinear Cauchy problems and their applications. Starting from the classical Hille-Yosida theorem, semigroup method, and spectral theory, this monograph introduces the abstract Cauchy problems with non-dense domain, integrated semigroups, the existence of integrated solutions, positivity of solutions, Lipschitz perturbation, differentiability of solutions with respect to the state variable, and time differentiability of solutions. Combining the functional analysis method and bifurcation approach in dynamical systems, then the nonlinear dynamics such as the stability of equilibria, center manifold theory, Hopf bifurcation, and normal form theory are established for abstract Cauchy problems with non-dense domain. Finally applications to functional differential equations, age-structured models, and parabolic equations are presented. This monograph will be very valuable for graduate students and researchers in the fields of abstract Cauchy problems, infinite dimensional dynamical systems, and their applications in biological, chemical, medical, and physical problems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.