Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.
Modern Industrial Statistics The new edition of the prime reference on the tools of statistics used in industry and services, integrating theoretical, practical, and computer-based approaches Modern Industrial Statistics is a leading reference and guide to the statistics tools widely used in industry and services. Designed to help professionals and students easily access relevant theoretical and practical information in a single volume, this standard resource employs a computer-intensive approach to industrial statistics and provides numerous examples and procedures in the popular R language and for MINITAB and JMP statistical analysis software. Divided into two parts, the text covers the principles of statistical thinking and analysis, bootstrapping, predictive analytics, Bayesian inference, time series analysis, acceptance sampling, statistical process control, design and analysis of experiments, simulation and computer experiments, and reliability and survival analysis. Part A, on computer age statistical analysis, can be used in general courses on analytics and statistics. Part B is focused on industrial statistics applications. The fully revised third edition covers the latest techniques in R, MINITAB and JMP, and features brand-new coverage of time series analysis, predictive analytics and Bayesian inference. New and expanded simulation activities, examples, and case studies—drawn from the electronics, metal work, pharmaceutical, and financial industries—are complemented by additional computer and modeling methods. Helping readers develop skills for modeling data and designing experiments, this comprehensive volume: Explains the use of computer-based methods such as bootstrapping and data visualization Covers nonstandard techniques and applications of industrial statistical process control (SPC) charts Contains numerous problems, exercises, and data sets representing real-life case studies of statistical work in various business and industry settings Includes access to a companion website that contains an introduction to R, sample R code, csv files of all data sets, JMP add-ins, and downloadable appendices Provides an author-created R package, mistat, that includes all data sets and statistical analysis applications used in the book Part of the acclaimed Statistics in Practice series, Modern Industrial Statistics with Applications in R, MINITAB, and JMP, Third Edition, is the perfect textbook for advanced undergraduate and postgraduate courses in the areas of industrial statistics, quality and reliability engineering, and an important reference for industrial statisticians, researchers, and practitioners in related fields. The mistat R-package is available from the R CRAN repository.
The present monograph is a comprehensive summary of the research on visibility in random fields, which I have conducted with the late Professor Micha Yadin for over ten years. This research, which resulted in several published papers and technical reports (see bibliography), was motivated by some military problems, which were brought to our attention by Mr. Pete Shugart of the US Army TRADOC Systems Analysis Activity, presently called US Army TRADOC Analysis Command. The Director ofTRASANA at the time, the late Dr. Wilbur Payne, identified the problems and encouraged the support and funding of this research by the US Army. Research contracts were first administered through the Office of Naval Research, and subsequently by the Army Research Office. We are most grateful to all involved for this support and encouragement. In 1986 I administered a three-day workshop on problem solving in the area of sto chastic visibility. This workshop was held at the White Sands Missile Range facility. A set of notes with some software were written for this workshop. This workshop led to the incorporation of some of the methods discussed in the present book into the Army simulation package CASTFOREM. Several people encouraged me to extend those notes and write the present monograph on the level of those notes, so that the material will be more widely available for applications.
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
An expert introduction to stage-wise adaptive designs in all areas of statistics Stage-Wise Adaptive Designs presents the theory and methodology of stage-wise adaptive design across various areas of study within the field of statistics, from sampling surveys and time series analysis to generalized linear models and decision theory. Providing the necessary background material along with illustrative S-PLUS functions, this book serves as a valuable introduction to the problems of adaptive designs. The author begins with a cohesive introduction to the subject and goes on to concentrate on generalized linear models, followed by stage-wise sampling procedures in sampling surveys. Adaptive forecasting in the area of time series analysis is presented in detail, and two chapters are devoted to applications in clinical trials. Bandits problems are also given a thorough treatment along with sequential detection of change-points, sequential applications in industrial statistics, and software reliability. S-Plus functions are available to accompany particular computations, and all examples can be worked out using R, which is available on the book's related FTP site. In addition, a detailed appendix outlines the use of these software functions, while an extensive bibliography directs readers to further research on the subject matter. Assuming only a basic background in statistical topics, Stage-Wise Adaptive Designs is an excellent supplement to statistics courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for researchers and practitioners in the fields of statistics and biostatistics.
This monograph is focused on the derivations of exact distributions of first boundary crossing times of Poisson processes, compound Poisson processes, and more general renewal processes. The content is limited to the distributions of first boundary crossing times and their applications to various stochastic models. This book provides the theory and techniques for exact computations of distributions and moments of level crossing times. In addition, these techniques could replace simulations in many cases, thus providing more insight about the phenomenona studied. This book takes a general approach for studying telegraph processes and is based on nearly thirty published papers by the author and collaborators over the past twenty five years. No prior knowledge of advanced probability is required, making the book widely available to students and researchers in applied probability, operations research, applied physics, and applied mathematics.
Parametric Statistical Inference: Basic Theory and Modern Approaches presents the developments and modern trends in statistical inference to students who do not have advanced mathematical and statistical preparation. The topics discussed in the book are basic and common to many fields of statistical inference and thus serve as a jumping board for in-depth study. The book is organized into eight chapters. Chapter 1 provides an overview of how the theory of statistical inference is presented in subsequent chapters. Chapter 2 briefly discusses statistical distributions and their properties. Chapter 3 is devoted to the problem of sufficient statistics and the information in samples, and Chapter 4 presents some basic results from the theory of testing statistical hypothesis. In Chapter 5, the classical theory of estimation is developed. Chapter 6 discusses the efficiency of estimators and some large sample properties, while Chapter 7 studies the topics on confidence intervals. Finally, Chapter 8 is about decision theoretic and Bayesian approach in testing and estimation. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability will highly benefit from this book.
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving More than 430 unique exercises with select solutions Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
Modern Industrial Statistics The new edition of the prime reference on the tools of statistics used in industry and services, integrating theoretical, practical, and computer-based approaches Modern Industrial Statistics is a leading reference and guide to the statistics tools widely used in industry and services. Designed to help professionals and students easily access relevant theoretical and practical information in a single volume, this standard resource employs a computer-intensive approach to industrial statistics and provides numerous examples and procedures in the popular R language and for MINITAB and JMP statistical analysis software. Divided into two parts, the text covers the principles of statistical thinking and analysis, bootstrapping, predictive analytics, Bayesian inference, time series analysis, acceptance sampling, statistical process control, design and analysis of experiments, simulation and computer experiments, and reliability and survival analysis. Part A, on computer age statistical analysis, can be used in general courses on analytics and statistics. Part B is focused on industrial statistics applications. The fully revised third edition covers the latest techniques in R, MINITAB and JMP, and features brand-new coverage of time series analysis, predictive analytics and Bayesian inference. New and expanded simulation activities, examples, and case studies—drawn from the electronics, metal work, pharmaceutical, and financial industries—are complemented by additional computer and modeling methods. Helping readers develop skills for modeling data and designing experiments, this comprehensive volume: Explains the use of computer-based methods such as bootstrapping and data visualization Covers nonstandard techniques and applications of industrial statistical process control (SPC) charts Contains numerous problems, exercises, and data sets representing real-life case studies of statistical work in various business and industry settings Includes access to a companion website that contains an introduction to R, sample R code, csv files of all data sets, JMP add-ins, and downloadable appendices Provides an author-created R package, mistat, that includes all data sets and statistical analysis applications used in the book Part of the acclaimed Statistics in Practice series, Modern Industrial Statistics with Applications in R, MINITAB, and JMP, Third Edition, is the perfect textbook for advanced undergraduate and postgraduate courses in the areas of industrial statistics, quality and reliability engineering, and an important reference for industrial statisticians, researchers, and practitioners in related fields. The mistat R-package is available from the R CRAN repository.
This monograph highlights the connection between the theoretical work done by research statisticians and the impact that work has on various industries. Drawing on decades of experience as an industry consultant, the author details how his contributions have had a lasting impact on the field of statistics as a whole. Aspiring statisticians and data scientists will be motivated to find practical applications for their knowledge, as they see how such work can yield breakthroughs in their field. Each chapter highlights a consulting position the author held that resulted in a significant contribution to statistical theory. Topics covered include tracking processes with change points, estimating common parameters, crossing fields with absorption points, military operations research, sampling surveys, stochastic visibility in random fields, reliability analysis, applied probability, and more. Notable advancements within each of these topics are presented by analyzing the problems facing various industries, and how solving those problems contributed to the development of the field. The Career of a Research Statistician is ideal for researchers, graduate students, or industry professionals working in statistics. It will be particularly useful for up-and-coming statisticians interested in the promising connection between academia and industry.
Parametric Statistical Inference: Basic Theory and Modern Approaches presents the developments and modern trends in statistical inference to students who do not have advanced mathematical and statistical preparation. The topics discussed in the book are basic and common to many fields of statistical inference and thus serve as a jumping board for in-depth study. The book is organized into eight chapters. Chapter 1 provides an overview of how the theory of statistical inference is presented in subsequent chapters. Chapter 2 briefly discusses statistical distributions and their properties. Chapter 3 is devoted to the problem of sufficient statistics and the information in samples, and Chapter 4 presents some basic results from the theory of testing statistical hypothesis. In Chapter 5, the classical theory of estimation is developed. Chapter 6 discusses the efficiency of estimators and some large sample properties, while Chapter 7 studies the topics on confidence intervals. Finally, Chapter 8 is about decision theoretic and Bayesian approach in testing and estimation. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory course in probability will highly benefit from this book.
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.
Reliability analysis is concerned with the analysis of devices and systems whose individual components are prone to failure. This textbook presents an introduction to reliability analysis of repairable and non-repairable systems. It is based on courses given to both undergraduate and graduate students of engineering and statistics as well as in workshops for professional engineers and scientists. As aresult, the book concentrates on the methodology of the subject and on understanding theoretical results rather than on its theoretical development. An intrinsic aspect of reliability analysis is that the failure of components is best modelled using techniques drawn from probability and statistics. Professor Zacks covers all the basic concepts required from these subjects and covers the main modern reliability analysis techniques thoroughly. These include: the graphical analysis of life data, maximum likelihood estimation and bayesian likelihood estimation. Throughout the emphasis is on the practicalities of the subject with numerous examples drawn from industrial and engineering settings.
This innovative textbook presents material for a course on industrial statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on the basic tools and principles of process control, methods of statistical process control (SPC), and multivariate SPC. Next, the authors explore the design and analysis of experiments, quality control and the Quality by Design approach, computer experiments, and cyber manufacturing and digital twins. The text then goes on to cover reliability analysis, accelerated life testing, and Bayesian reliability estimation and prediction. A final chapter considers sampling techniques and measures of inspection effectiveness. Each chapter includes exercises, data sets, and applications to supplement learning. Industrial Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. In addition, it can be used in focused workshops combining theory, applications, and Python implementations. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Modern Statistics: A Computer-Based Approach with Python. It covers topics such as probability models and distribution functions, statistical inference and bootstrapping, time series analysis and predictions, and supervised and unsupervised learning. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/IndustrialStatistics/. "This book is part of an impressive and extensive write up enterprise (roughly 1,000 pages!) which led to two books published by Birkhäuser. This book is on Industrial Statistics, an area in which the authors are recognized as major experts. The book combines classical methods (never to be forgotten!) and "hot topics" like cyber manufacturing, digital twins, A/B testing and Bayesian reliability. It is written in a very accessible style, focusing not only on HOW the methods are used, but also on WHY. In particular, the use of Python, throughout the book is highly appreciated. Python is probably the most important programming language used in modern analytics. The authors are warmly thanked for providing such a state-of-the-art book. It provides a comprehensive illustration of methods and examples based on the authors longstanding experience, and accessible code for learning and reusing in classrooms and on-site applications." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
A large number of papers have appeared in the last twenty years on estimating and predicting characteristics of finite populations. This monograph is designed to present this modern theory in a systematic and consistent manner. The authors' approach is that of superpopulation models in which values of the population elements are considered as random variables having joint distributions. Throughout, the emphasis is on the analysis of data rather than on the design of samples. Topics covered include: optimal predictors for various superpopulation models, Bayes, minimax, and maximum likelihood predictors, classical and Bayesian prediction intervals, model robustness, and models with measurement errors. Each chapter contains numerous examples, and exercises which extend and illustrate the themes in the text. As a result, this book will be ideal for all those research workers seeking an up-to-date and well-referenced introduction to the subject.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.