This book is aimed to provide comprehensive and systematic knowledge of kinematic synthesis as developed up to date. Modern mechanical systems require advance kinematics knowledge to support mechanism design with sound theories and methods. The book includes not only the classical foundations of kinematic synthesis, but also the latest advances developed by the authors. Moreover, many examples are included to illustrate both methods and their supporting theory. The focus is on systems of rigid bodies forming closed loops. The four-bar linkage, representing the foundations of mechanical systems, is given due attention, in its three domains: planar, spherical, and spatial. The book contains six chapters, the first two covering fundamentals for kinematic synthesis, including qualitative synthesis. Chapters 3–5 describe, in full detail, the function, motion, and path syntheses of single-dof linkages. In the last chapter, the synthesis of single-dof complex linkages, including six-bar and ten-bar linkages, is introduced. The book is suitable for graduate students of mechanical engineering, researchers of mechanism and robot design, and machine design engineers.
Bioactive Polysaccharides offers a comprehensive review of the structures and bioactivities of bioactive polysaccharides isolated from traditional herbs, fungi, and seaweeds. It describes and discusses specific topics based on the authors' rich experience, including extraction technologies, practical techniques required for purification and fractionation, strategies and skills for elucidating the fine structures, in-vitro and in-vivo protocols, and methodologies for evaluating the specific bioactivities, including immune-modulating activities, anti-cancer activities, anti-oxidant activities, and others. This unique book also discusses partial structure-functionality (bioactivities) relationships based on conformational studies. This comprehensive work can be used as a handbook to explore potential applications in foods, pharmaceuticals, and nutraceutical areas for commercial interests. - Serves as a comprehensive review on extraction technologies, and as a practical guide for the purification and fractionation of bioactive polysaccharides - Brings step-by-step strategies for elucidating the fine structures and molecular characterizations of bioactive polysaccharides - Includes detailed experimental design and methodologies for investigation bioactivities using both in-vitro and in-vivo protocols - Clarifies how to extract, purify, and fractionate bioactive polysaccharides, also exploring health benefits - Useful as a guide to explore the commercial potentials of bioactive polysaccharides as pharmaceuticals, medicine, and functional foods
This book is aimed to provide comprehensive and systematic knowledge of kinematic synthesis as developed up to date. Modern mechanical systems require advance kinematics knowledge to support mechanism design with sound theories and methods. The book includes not only the classical foundations of kinematic synthesis, but also the latest advances developed by the authors. Moreover, many examples are included to illustrate both methods and their supporting theory. The focus is on systems of rigid bodies forming closed loops. The four-bar linkage, representing the foundations of mechanical systems, is given due attention, in its three domains: planar, spherical, and spatial. The book contains six chapters, the first two covering fundamentals for kinematic synthesis, including qualitative synthesis. Chapters 3–5 describe, in full detail, the function, motion, and path syntheses of single-dof linkages. In the last chapter, the synthesis of single-dof complex linkages, including six-bar and ten-bar linkages, is introduced. The book is suitable for graduate students of mechanical engineering, researchers of mechanism and robot design, and machine design engineers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.