This book presents, above all, a study of the establishment and development of the Soviet organization and system of fashion industry and design as it gradually evolved in the years after the Second World War in the Soviet Union, which was, in the understanding of its leaders, reaching the mature or last stage of socialism when the country was firmly set on the straight trajectory to its final goal, Communism. What was typical of this complex and extensive system of fashion was that it was always loyally subservient to the principles of the planned socialist economy. This did not by any means indicate that everything the designers and other fashion professionals did was dictated entirely from above by the central planning agencies. Neither did it mean that their professional judgment would have been only secondary to ideological and political standards set by the Communist Party and the government of the Soviet Union. On the contrary, as our study shows, the Soviet fashion professionals had a lot of autonomy. They were eager and willing to exercise their own judgment in matters of taste and to set the agenda of beauty and style for Soviet citizens. The present book is the first comprehensive and systematic history of the development of fashion and fashion institutions in the Soviet Union after the Second World War. Our study makes use of rich empirical and historical material that has been made available for the first time for scientific analysis and discussion. The main sources for our study came from the state, party and departmental archives of the former Soviet Union. We also make extensive use of oral history and the writings published in Soviet popular and professional press.
Proceedings of the Third International Conference on Advanced Composite Materials and Technologies for Aerospace Applications held on May 13-16, 2013, Wrexham, North Wales, United Kingdom
Proceedings of the 5th International Conference on Sensors and Electronic Instrumentation Advances SEIA' 2019), 25-27 September 2019, Tenerife (Canary Islands), Spain. The coverage includes: various physical sensors, gas sensors, optical and fiber optical sensors and systems, biosensors, sensors networks and applications.
This reference work offers a method of deriving exact solutions to the biharmonic equation in the context of elasticity problems, and proposes a number of new solutions. Beginning with an in-depth presentation of a general mathematical model, this text proceeds to outline specific applications, extending the developed method to special harmonic problems of mechanics for conjugated domains. All applications are illustrated with numerical examples.
This book presents developments of techniques for detection and analysis of two electrons resulting from the interaction of a single incident electron with a solid surface. Spin dependence in scattering of spin-polarized electrons from magnetic and non-magnetic surfaces is governed by exchange and spin-orbit effects. The effects of spin and angular electron momentum are shown through symmetry of experimental geometries: (i) normal and off normal electron incidence on a crystal surface, (ii) spin polarization directions within mirror planes of the surface, and (iii) rotation and interchange of detectors with respect to the surface normal. Symmetry considerations establish relationships between the spin asymmetry of two-electron distributions and the spin asymmetry of Spectral Density Function of the sample, hence providing information on the spin-dependent sample electronic structure. Detailed energy and angular distributions of electron pairs carry information on the electron-electron interaction and electron correlation inside the solid. The “exchange – correlation hole” associated with Coulomb and exchange electron correlation in solids can be visualized using spin-polarized two-electron spectroscopy. Also spin entanglement of electron pairs can be probed. A description of correlated electron pairs generation from surfaces using other types of incident particles, such as photons, ions, positrons is also presented.
A systematic study of chaotic ray dynamics in underwater acoustic waveguides began in the mid-1990s when it was realized that this factor plays a crucial role in long-range sound propagation in the ocean. The phenomenon of ray chaos and its manifestation at a finite wavelength — wave chaos — have been investigated by combining methods from the theory of wave propagation and the theory of dynamical and quantum chaos.This book is the first monograph summarizing results obtained in this field. Emphasis is made on the exploration of ray and modal structures of the wave field in an idealized environmental model with periodic range dependence and in a more realistic model with sound speed fluctuations induced by random internal waves. The book is intended for acousticians investigating the long-range sound transmission through the fluctuating ocean and also for researchers studying waveguide propagation in other media. It will be of major interest to scientists working in the field of dynamical and quantum chaos.
To survive in a scientific environment, it is necessary to constantly trick. But how it is concrete? This question is answered by the author using his life experience and the experience of comrades, graduates of MEPhI and military engineering academy. Many “pitfalls” that are not visible to a young man planning to become a researcher have been unearthed. Familiarity with these facts can significantly influence a young man’s choice of his way. If anything, his choice will be more conscious.
Back-action of aerodynamics onto structures such as wings cause vibrations and may resonantly couple to them, thus causing instabilities (flutter) and endangering the whole structure. By careful choices of geometry, materials and damping mechanisms, hazardous effects on wind engines, planes, turbines and cars can be avoided. Besides an introduction into the problem of flutter, new formulations of flutter problems are given as well as a treatise of supersonic flutter and of a whole range of mechanical effects. Numerical and analytical methods to study them are developed and applied to the analysis of new classes of flutter problems for plates and shallow shells of arbitrary plane form. Specific problems discussed in the book in the context of numerical simulations are supplemented by Fortran code examples (available on the website).
Advances in Optics: Reviews' Book Series is a comprehensive study of the field of optics, which provides readers with the most up-to-date coverage of optics, photonics and lasers with a good balance of practical and theoretical aspects. Directed towards both physicists and engineers this Book Series is also suitable for audiences focusing on applications of optics. The Vol.2 is devoted to lasers and photonics, and contains 15 chapters written by 40 authors from 15 countries: Algeria, Australia, Canada, China, Ecuador, Finland, France, Germany, India, Mexico, Poland, Qatar, Spain, Turkey and USA. A clear comprehensive presentation makes these books work well as both a teaching resources and a reference books. The book is intended for researchers and scientists in physics and optics, in academia and industry, as well as postgraduate students.
This book focuses on crisis management in forest industry of Russia. It is about the present, and the future, with a short retrospective about the past of the forest industry in Russia. It includes forecasting too and description of some of the best practices of developed countries to be implemented in Russia to overcome the crisis. The main theme of the book is smart innovations and innovative activities introduced and also those which are required in the forest industry of Russia. The book considers the effectiveness of innovations and institutional changes in the forest industry, which are an important direction of innovation activities required all together with technological and economic breakthrough with ecological aspects in priority. The necessity to implement the modern innovation system in the forest industry based on institutional changes is substantiated and thoroughly explained with successful examples of ongoing and future up-to-date smart innovations. The development of the forest innovation system is suggested for sustainable forest industry management; the key components of which are technological, product, institutional, and ecological innovations, as well as, innovative entrepreneurship. Realization of the innovation system for technological and intellectual improvement requires good scientific and personnel provision, anticipation of markets and tendencies of development for some decades ahead. The implied advanced technologies in the forest industry also include IT-, nano-, and biotechnologies. The success stories of the leading Russian and international companies in the forest industry of Russia are studied attentively in the book. The book presents a profound methodical and theoretical substantiation for the further implementation of the smart innovations and of the successful experience of the industry leading companies.
Mitochondria as a Key Intracellular Target of Thallium Toxicity presents a new hypothesis that explains the decrease in antioxidant defense of thallium poisoning and proposes a new model for studying the transport of inorganic cations across the inner mitochondrial membrane. Readers will learn about the toxicity of thallium and its compounds, the toxicology of thallium, the toxic thallium effects on cells, and the effects of thallium on mitochondria. In addition, the book lists the pathways and mechanisms of thallium transport into cells and mitochondria, including information on toxicity that has been analyzed at both the cellular and subcellular levels. The increase in human contact with the toxic trace element thallium is associated with industry development, the release of metal into the environment from various rocks, and the use of special isotope techniques for studying the vascular bed. - Highlights the differences between the toxic effect of thallium and the action of other heavy metals on cells and mitochondria - Explains why the toxicity of thallium in experiments in vivo is higher than that of bivalent heavy metals - Discusses the applied in vitro model when searching for new inhibitors of the mitochondrial permeability transition pore
This book explores new principles of Self-Initiating Volume Discharge for creating high-energy non-chain HF(DF) lasers, as well as the creation of highly efficient lasers with output energy and radiation power in the spectral region of 2.6–5 μm. Today, sources of high-power lasing in this spectral region are in demand in various fields of science and technology including remote sensing of the atmosphere, medicine, biological imaging, precision machining and other special applications. These applications require efficient laser sources with high pulse energy, pulsed and average power, which makes the development of physical fundamentals of high-power laser creation and laser complexes of crucial importance. High-Energy Ecologically Safe HF/DF Lasers: Physics of Self-Initiated Volume Discharge-Based HF/DF Lasers examines the conditions of formation of SSVD, gas composition and the mode of energy input into the gas on the efficiency and radiation energy of non-chain HF(DF) lasers. Key Features: Shares research results on SSVD in mixtures of non-chain HF(DF) lasers Studies the stability and dynamics of the development of SSVD Discusses the effect of the gas composition and geometry of the discharge gap (DG) on its characteristics Proposes recommendations for gas composition and for the method of obtaining SSVD in non-chain HF(DF) lasers Develops simple and reliable wide-aperture non-chain HF(DF) lasers and investigates their characteristics Investigates the possibilities of expanding the lasing spectrum of non-chain HF(DF) lasers
The Nature of Complex Networks provides a systematic introduction to the statistical mechanics of complex networks and the different theoretical achievements in the field that are now finding strands in common.The book presents a wide range of networks and the processes taking place on them, including recently developed directions, methods, and techniques. It assumes a statistical mechanics view of random networks based on the concept of statistical ensembles but also features the approaches and methodsof modern random graph theory and their overlaps with statistical physics.This book will appeal to graduate students and researchers in the fields of statistical physics, complex systems, graph theory, applied mathematics, and theoretical epidemiology.
This two-volume monograph presents new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. These allow one to match the asymptotics of various properties with each other in transition regions and to get unified formulas for the connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena in the natural sciences. These include the outset of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering applications, and quantum systems. Apart from being of independent interest, such approximate solutions serve as a foolproof basis for testing numerical algorithms. This first volume presents asymptotic methods in oscillation and resonance problems described by ordinary differential equations, whereby the second volume will be devoted to applications of asymptotic methods in waves and boundary value problems. Contents Asymptotic expansions and series Asymptotic methods for solving nonlinear equations Nonlinear oscillator in potential well Autoresonances in nonlinear systems Asymptotics for loss of stability Systems of coupled oscillators
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable. Translated by SAE from Russian, this book narrates the history of HDWVs and presents the theory and calculations required to design them. It summarizes results of the authors’ academic research and experience and presents innovative technical solutions used for electric and hydrostatic transmissions, steering systems, and active safety of these vehicles. The book consists of three parts. Part one covers HDWV design history and general design methods, including basic vehicle design, and evaluating HDWV use conditions. Part one also covers general operation requirements and consumer needs, and a brief analysis of structural components of existing HDWVs and prototypes. Part two outlines information needs for designing HDWVs. Part three reviews basic theory and calculation of innovative technical solutions, as well as special requirements for component parts. This comprehensive title provides the following information about HDWVs: • History of design and manufacture. • Manufacturers’ summary design data. • Background data on sample vehicles. • Component calculation examples. • Overview of motion theory, which is useful in design and placement of bulky cargo.
This book offers a comprehensive and timely review of the fracture behavior of bimaterial composites consisting of periodically connected components, i.e. of bimaterial composites possessing periodical cracks along the interface. It first presents an overview of the literature, and then analyzes the isotropic, anisotropic and piezoelectric/dielectric properties of bimaterial components, gradually increasing the difficulty of the solutions discussed up to the coupled electromechanical problems. While in the case of isotropic and anisotropic materials it covers the problems generated by an arbitrary set of cracks, for the piezoelectric materials it focuses on studying the influence of the electric permittivity of the crack’s filler, using not only a simple, fully electrically permeable model, but also a physically realistic, semi-permeable model. Throughout the analyses, the effects of the contact of the crack faces are taken into account so as to exclude the physically unrealistic interpenetration of the composite components that are typical of the classical open model. Further, the book derives and examines the mechanical and electromechanical fields, stress and electric intensity factors in detail. Providing extensive information on the fracture processes taking place in composite materials, the book helps readers become familiar with mathematical methods of complex function theory for obtaining exact analytical solutions.
In Memory and Identity in the Syriac Cave of Treasures, Sergey Minov analyses the role played by the pseudepigraphic work known as the Cave of Treasures in the formation of cultural memory and collective identity among Syriac Christians of Iran during Late Antiquity.
This book discusses the tribological, rheological and optical properties of liquid-crystal nanomaterials as well as lubricant media. It also describes the formation of liquid-crystal materials and the application of cholesteric liquid-crystal compounds in technical friction units and in human and animal joints. Further, it shows the connection between the tribological and other physical properties of liquid-crystal cholesterol compounds and develops a lubricity conceptual model of cholesteric–nematic, liquid-crystalline nanostructures on the basis of physical and energetic interpretations. This general model is valid for all surfaces and friction pairs, including biopolymers, and could lead to applications of cholesteric liquid-crystalline nanomaterials in different friction units and tribosystems as well as in the treatment of joint diseases.
The book presents Russian experience in researching and developing theoretical and experimental problems of heavy concrete elements and constructions with functionally gradient structure, manufactured by using mechanical and electromagnetic vibrations, and broadly utilized in different areas of industry. Original theoretical, experimental and numerical methods are developed for the analysis and design of the aggregate and local characteristics of vibrated, centrifuged and vibro-centrifuged concrete rings and columns. The promising experimental techniques and results presented in this volume have been supported by Russian patents and used for improvement of reinforced concrete products.
This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects. The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the results could potentially be applied. The book covers the following topics: · excitation of electromagnetic fields in coordinate electrodynamic volumes; · Green’s functions for spherical resonators; · Green’s functions for infinite space outside of spherical scatterers; · electromagnetic fields of dipole radiators on spherical scatterers; · electromagnetic fields of thin radial impedance vibrators on perfectly conducting spheres; · electrodynamic characteristics of narrow slots in spherical surfaces; · multi-element and combined vibrator-slot radiators on spherical surfaces.
This proceedings volume presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices. Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, as well as nanotechnology and quantum processing of information, this books gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.
This proceedings volume presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices. Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, as well as nanotechnology and quantum processing of information, this book gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.
One of the directions of nanotechnology is the production of nanopowders (NPs). Nanopowders, according to the currently widely used classification of nanomaterials, belong to zero-dimensional systems in which the limitation of wave functions occurs in all three directions. Biological methods are considered the most environmentally friendly way to synthesize NPs, but the possibility of biological contamination with mutated microorganisms cannot be ruled out. This book presents a new method for producing simple and complex metal oxide and fluoride NPs, based on the “evaporation-condensation” process using pulsed electron beam evaporation. It presents the results of more than 10 years of study of the characteristics of NPs produced using the aforementioned method. This eco-friendly method ensures the production of clean NPs, which are mesoporous and suitable for use in various applications such as medicine, spintronics, optoelectronics, dosimeters, photocatalysis, semiconductors, and ultraviolet and blue lasers. Importantly, these NPs have the potential to be used as a drug delivery system and in the creation of new nanostructures that do not contain noble metals. The book will be useful for the researchers in macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in drug delivery or cancer therapy.
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.
Complex plasmas are dusty plasmas in which the density and electric charges of the dust grains are sufficiently high to induce long-range grain-grain interactions, as well as strong absorption of charged-plasma components. Together with the sources replenishing the plasma such systems form a highly dissipative thermodynamically open system that exhibits many features of collective behaviour generally found in complex systems. Most notably among them are self-organized patterns such as plasma crystals, plasma clusters, dust stars and further spectacular new structures. Beyond their intrinsic scientific interest, the study of complex plasmas grows in importance in a great variety of fields, ranging from space-plasma sciences to applied fields such as plasma processing, thin-film deposition and even the production of computer chips by plasma etching, in which strongly interacting clouds of complex plasmas can cause major contamination of the final product. Intended as first introductory but comprehensive survey of this rapidly emerging field, the present book addresses postgraduate students as well as specialist and nonspecialist researchers with a general background in either plasma physics, space sciences or the physics of complex systems.
The 2nd volume of 'Advances in Microelectronics: Reviews' Book Series is written by 57 contributors from academy and industry from 11 countries (Bulgaria, Hungary, Iran, Japan, Malaysia, Romania, Russia, Slovak Republic, Spain, Ukraine and USA). The book contains 13 chapters from different areas of microelectronics: MEMS, materials characterization, and various microelectronic devices. With unique combination of information in each volume, the Book Series will be of value for scientists and engineers in industry and at universities. Each of chapter is ending by well selected list of references with books, journals, conference proceedings and web sites. This book ensures that readers will stay at the cutting edge of the field and get the right and effective start point and road map for the further researches and developments.
This textbook is intended for a course in electromagnetism for upper undergraduate and graduate students. The main concepts and laws of classical macroscopic electrodynamics and initial information about generalized laws of modern electromagnetics are discussed, explaining some paradoxes of the modern theory. The reader then gets acquainted with electrodynamics methods of field analysis on the basis of wave equation solution. Emission physics are considered using an example of the Huygens-Fresnel-Kirchhoff canonic principle. The representation about strict electrodynamics task statement on the base of Maxwell equations, boundary conditions, emission conditions and the condition on the edge is given. Different classes of approximate boundary conditions are presented, which essentially simplify understanding of process physics. The canonic Fresnel functions are given and their generalization on the case of anisotropic impedance. The free waves in closed waveguides and in strip-slotted and edge-dielectric transmission lines are described. A large number of Mathcad programs for illustration of field patterns and its properties in different guiding structures are provided. The material is organized for self-study as well as classroom use.
This reference work offers a method of deriving exact solutions to the biharmonic equation in the context of elasticity problems, and proposes a number of new solutions. Beginning with an in-depth presentation of a general mathematical model, this text proceeds to outline specific applications, extending the developed method to special harmonic problems of mechanics for conjugated domains. All applications are illustrated with numerical examples.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.