Discover the latest advances in ferroelectric and piezoelectric material sciences with this comprehensive monograph, divided into six chapters, each offering unique insights into the field.Chapter 1 delves into the manufacture and study of new ceramic materials, focusing on complex oxides of various metals (Aurivillius phases). The authors explore layered bismuth titanates and niobates, known for their high Curie temperature, and discuss how varying their chemical composition can lead to significant changes in their electrophysical properties. Chapter 2 explores the fascinating world of ferroelectrics — dielectrics with spontaneous polarization. Mathematical models and approaches of fractional calculus are used to understand the process of polarization switching in these materials, shedding light on the fractality of electrical responses. In Chapter 3, readers gain valuable insights into the inhomogeneous polarization process of polycrystalline ferroelectrics, a crucial stage in creating piezoceramic samples for energy converters. The authors present a comprehensive mathematical model that allows the determination of various characteristics, including dielectric and piezoelectric hysteresis loops and the effect of attenuation processes.Chapter 4 focuses on state-of-the-art piezoelectric energy harvesting, discussing theoretical, experimental, and computer modelling approaches. The authors discuss piezoelectric generators (PEGs) of different types (cantilever, stack and axis) and nonlinear effects arising at their operation. Chapter 5 presents expanded test and finite element models for cantilever-type and axial-type PEGs with active elements. The studies cover various structural and electric schemes of the PEGs with proof mass, bimorph and cylindrical piezoelectric elements, and excitation loads. Finally, Chapter 6 reviews some results in the last five years, obtained in modelling the vibration of devices from piezoactive materials, including five important effects: piezoelectric, flexoelectric, pyroelectric, piezomagnetic and flexomagnetic.As a diverse addition to the literature, this book is a relevant resource for researchers, engineers, and students seeking to expand their knowledge of cutting-edge developments in this exciting field.
This book discusses how the increased emanation of radon and other gases from the Earth’s crust in the vicinity of active tectonic faults triggers a chain of physical processes and chemical reactions in the atmospheric boundary layer and the Earth’s ionosphere over an earthquake area several days/hours before strong seismic shocks occur. It presents the two main concepts involved in this mechanism: atmosphere ionization and the global electric circuit. The Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept is strongly supported by experimental data showing the atmospheric and ionospheric precursors for major recent earthquakes including 2004 Sumatra; 2008 Sichuan, China; 2011 Tohoku, Japan; and 2015 Nepal. The book not only addresses the theoretical considerations but also includes information on experimental techniques used for precursor observations based on the space-borne systems. Providing practical methods of precursor identification and interpretation, it is an excellent textbook for graduate courses in geophysics, earthquake science, atmospheric physics and remote sensing. Moreover, it offers a wealth of information for scientists and experts from governmental and international agencies working in the fields of natural-disaster mitigation, response and recovery.
Pre-Earthquake signals are advanced warnings of a larger seismic event. A better understanding of these processes can help to predict the characteristics of the subsequent mainshock. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies presents the latest research on earthquake forecasting and prediction based on observations and physical modeling in China, Greece, Italy, France, Japan, Russia, Taiwan, and the United States. Volume highlights include: Describes the earthquake processes and the observed physical signals that precede them Explores the relationship between pre-earthquake activity and the characteristics of subsequent seismic events Encompasses physical, atmospheric, geochemical, and historical characteristics of pre-earthquakes Illustrates thermal infrared, seismo–ionospheric, and other satellite and ground-based pre-earthquake anomalies Applies these multidisciplinary data to earthquake forecasting and prediction Written for seismologists, geophysicists, geochemists, physical scientists, students and others, Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies offers an essential resource for understanding the dynamics of pre-earthquake phenomena from an international and multidisciplinary perspective.
How Putin's autocracy undercut Russia's economy and chances for democracy During his nearly twenty years at the center of Russian political power, Vladimir Putin has transformed the vast country in many ways, not all of them for the better. The near-chaos of the early post-Soviet years has been replaced by an increasingly rigid authoritarianism, resembling a hard-fisted monarchy more than the previous communist dictatorship. Putin's early years in power saw rapid economic growth, averaging nearly 7 percent annually, and the rise of Moscow as a vibrant European-style city. But a slowdown during the second half of Putin's administration, since 2009, has resulted in the stagnation of the economy, especially in the hinterlands, with few signs of a possible turnaround. What accounted for these changes in Russia? Sergey Aleksashenko, a former top Russian finance official and then private businessman, lays the blame squarely on Putin himself, even more than external factors such as the sharp fall in oil prices or Western sanctions after Russia's annexation of Crimea in 2014. In his relentless drive to consolidate power in his own hands, Aleksashenko writes, Putin has destroyed the very idea of competition for political power. He has done so by systematically undercutting basic political institutions of the post-Soviet Russian state, including independent power centers such as the parliament, the judiciary, and a free media. In the economic realm, Putin effectively undermined Russia's still-emerging and very fragile system for protecting property rights—the basis of all economic activity. This in turn caused a sharp decline in private investment and thus contributed to the long-term economic slowdown. One result of Putin's rule was the destruction of the emerging checks and balances system in Russia, and that would be a major problem for Russia if and when it decides to become a "normal" democratic country based on Western values. In describing how all this happened, Aleksashenko's book offers universal lessons in the necessity of checks and balances in any political system—as well as in the importance of vibrant political institutions for economic growth.
The book aims to explain the variations of near-Earth plasma observed over seismically active areas several days/hours before strong seismic shocks. It demonstrates how seismo-ionospheric coupling is part of the global electric circuit and shows that the anomalous electric field appearing in active seismic areas is the main carrier of information from the earth into the ionosphere. The discussion of physical mechanisms is based on experimental data. The results can be regarded as the basis for future applications such as short-term earthquake prediction. It proceeds to describe existing complex systems of space-born and ground-based monitoring for electromagnetic and ionospheric precursors of earthquakes, as well as those still under construction. It is an excellent text for courses and contains a wealth of information for those scientists working in the field of natural disaster reduction.
Discover the latest advances in ferroelectric and piezoelectric material sciences with this comprehensive monograph, divided into six chapters, each offering unique insights into the field.Chapter 1 delves into the manufacture and study of new ceramic materials, focusing on complex oxides of various metals (Aurivillius phases). The authors explore layered bismuth titanates and niobates, known for their high Curie temperature, and discuss how varying their chemical composition can lead to significant changes in their electrophysical properties. Chapter 2 explores the fascinating world of ferroelectrics — dielectrics with spontaneous polarization. Mathematical models and approaches of fractional calculus are used to understand the process of polarization switching in these materials, shedding light on the fractality of electrical responses. In Chapter 3, readers gain valuable insights into the inhomogeneous polarization process of polycrystalline ferroelectrics, a crucial stage in creating piezoceramic samples for energy converters. The authors present a comprehensive mathematical model that allows the determination of various characteristics, including dielectric and piezoelectric hysteresis loops and the effect of attenuation processes.Chapter 4 focuses on state-of-the-art piezoelectric energy harvesting, discussing theoretical, experimental, and computer modelling approaches. The authors discuss piezoelectric generators (PEGs) of different types (cantilever, stack and axis) and nonlinear effects arising at their operation. Chapter 5 presents expanded test and finite element models for cantilever-type and axial-type PEGs with active elements. The studies cover various structural and electric schemes of the PEGs with proof mass, bimorph and cylindrical piezoelectric elements, and excitation loads. Finally, Chapter 6 reviews some results in the last five years, obtained in modelling the vibration of devices from piezoactive materials, including five important effects: piezoelectric, flexoelectric, pyroelectric, piezomagnetic and flexomagnetic.As a diverse addition to the literature, this book is a relevant resource for researchers, engineers, and students seeking to expand their knowledge of cutting-edge developments in this exciting field.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.