We discuss applying single-photon detectors to measurements with high accuracy. Two primary standard methods of detector calibration are reviewed: one based on a radiant power measurement (substitution method) and the other—on a simultaneous generation of photon pairs (correlation method). It is shown how to apply these methods to two types of detectors: with no photon number resolution (PNR) and with full PNR. In addition, an experimental comparison of the two calibration methods with non-PNR detectors is presented.
This book explores non-standard processes in complex electrochemical systems, covering the structure and phase composition of modified alloys, saturation kinetics, and properties of surface layers. It also investigates the plasma electrolytic polishing of many alloys. The book presents the physicist with conditions of heating metals up to 1000 °C inside a solution, the chemist with reactions in vapour-gaseous media and on the surface of an electrode, and the metal scientist with the diffusion saturation of metals with nitrogen, carbon and boron. It will also appeal to engineers, university and college professors, and other researchers in related fields.
This chapter presents an overview of efforts to improve photon-counting detection systems through the use of hybrid detection techniques such as spatial- and time-multiplexing of conventional detectors, and frequency up-conversion. It reviews the basic operation for these methods and illustrates their utility in a number of applications showing new or improved capabilities compared with conventional methods.
The book is devoted to some branches of the theory of approximation of abstract differential equations, namely, approximation of attractors in the case of hyperbolic equilibrium points, shadowing, and approximation of time-fractional semilinear problems.In this book, the most famous methods of several urgent branches of the theory of abstract differential equations scattered in numerous journal publications are systematized and collected together, which makes it convenient for the initial study of the subject and also for its use as a reference book. The presentation of the material is closed and accompanied by examples; this makes it easier to understand the material and helps beginners to quickly enter into the circle of ideas discussed.The book can be useful for specialists in partial differential equations, functional analysis, theory of approximation of differential equations, and for all researchers, students, and postgraduates who apply these branches of mathematics in their work.
Surface Acoustic Waves in Inhomogeneous Media covers almost all important problems of the interaction of different types of surface acoustic waves with surface inhomogeneities. The problems of surface acoustic wave interaction with periodic topographic gratings widely used in filters and resonators are under careful consideration. The most important results of surface wave scattering by local defects such as grooves, random roughness, elastic wedges are given. Different theoretical approaches and practical rules for solving the surface wave problems are presented.
This book deals with fields which possess different spins so, that there is an additional internal symmetry of such schemes. The main feature of theories with multi-spin is that transformations of the Lorentz and internal symmetry groups do not commute each other. So, parameters of the group are tensors but not scalars as in the more common-gauge theories. This kind of symmetry is also different from supersymmetry where group parameters are not scalars. The difference is that in this case the algebra of generators of the symmetry is closed without adding the generators of the Poincaré group. Consideration of schemes of fields with multi-spin possess some attractive features and avoid some difficulties but the price of this is the presence of the indefinite metric. It should be noted that some quantum theories of gravity also require the introduction of an indefinite metric. The localisation of parameters of the internal symmetry group leads to the gauge fields and field interactions. In Part II solutions are found for equations for particles with different spins in external classical and quantified electromagnetic fields, as well as the interaction of fields with multi-spin with external electromagnetic fields of different configurations.
This highly topical book comes at a time when the two-way relationship between humankind and the environment is moving inexorably to the top of the agenda. It covers both sides of this delicate balancing act, explaining how various natural processes influence humanity, including its economic activities and engineering structures, while also illuminating the ways in which human activity puts pressure on the natural environment. Chapters analyze a varied selection of phenomena that directly affect people’s lives, from geological processes such as earthquakes and tsunamis to cosmic events such as magnetic storms. The author moves on to consider the effect we have on nature, ranging from the impact of heavy industry to the environmental consequences of sport and recreational pastimes. Complete with maps, photographs and detailed case studies, this book provides a comprehensive overview of the biggest issue we face as a species—the way we relate to the natural world around us. This book includes more than 100 maps showing the global distribution of different natural processes/human activities and more that 450 photographs from many countries and all oceans. It will provide a valuable resource for both graduate students and researchers in many fields of knowledge. Sergey Govorushko is a chief research scholar at the Pacific Geographical Institute, Russian Academy of Sciences. He is also Professor at the Far Eastern Federal University (Vladivostok). Sergey Govorushko received his PhD from the Institute of Geography, Russian Academy of Sciences. His research activities focus on the interaction between humanity and the environment, including the impact of nature on humanity; the impact of humanity on the environment; and assessment of the interaction (environmental impact assessment, environmental audit, etc.). He has authored eight and co-authored seven monographs.
This book presents a 360-degree picture of the world of insects and explores how their existence affects our lives: the "good, bad, and ugly" aspects of their interactions with humankind. It provides a lucid introductory text for beginning undergraduate students in the life sciences, particularly those pursuing beginner courses in entomology, agriculture, and botany.
This book presents a detailed description of a robust pseudomultigrid algorithm for solving (initial-)boundary value problems on structured grids in a black-box manner. To overcome the problem of robustness, the presented Robust Multigrid Technique (RMT) is based on the application of the essential multigrid principle in a single grid algorithm. It results in an extremely simple, very robust and highly parallel solver with close-to-optimal algorithmic complexity and the least number of problem-dependent components. Topics covered include an introduction to the mathematical principles of multigrid methods, a detailed description of RMT, results of convergence analysis and complexity, possible expansion on unstructured grids, numerical experiments and a brief description of multigrid software, parallel RMT and estimations of speed-up and efficiency of the parallel multigrid algorithms, and finally applications of RMT for the numerical solution of the incompressible Navier Stokes equations. Potential readers are graduate students and researchers working in applied and numerical mathematics as well as multigrid practitioners and software programmers. Contents Introduction to multigrid Robust multigrid technique Parallel multigrid methods Applications of multigrid methods in computational fluid dynamics
The properties of strongly correlated electrons confined in two dimensions are a forefront area of modern condensed matter physics. In the past two or three decades, strongly correlated electron systems have garnered a great deal of scientific interest due to their unique and often unpredictable behavior. Two of many examples are the metallic state and the metal–insulator transition discovered in 2D semiconductors: phenomena that cannot occur in noninteracting systems. Tremendous efforts have been made, in both theory and experiment, to create an adequate understanding of the situation; however, a consensus has still not been reached. Strongly Correlated Electrons in Two Dimensions compiles and details cutting-edge research in experimental and theoretical physics of strongly correlated electron systems by leading scientists in the field. The book covers recent theoretical work exploring the quantum criticality of Mott and Wigner–Mott transitions, experiments on the metal–insulator transition and related phenomena in clean and dilute systems, the effect of spin and isospin degrees of freedom on low-temperature transport in two dimensions, electron transport near the 2D Mott transition, experimentally observed temperature and magnetic field dependencies of resistivity in silicon-based systems with different levels of disorder, and microscopic theory of the interacting electrons in two dimensions. Edited by Sergey Kravchenko, a prominent experimentalist, this book will appeal to advanced graduate-level students and researchers specializing in condensed matter physics, nanophysics, and low-temperature physics, especially those involved in the science of strong correlations, 2D semiconductors, and conductor–insulator transitions.
There are few notions as fundamental to contemporary science as those of computability and modelling. Computability and Models attempts to make some of the exciting and important new research developments in this area accessible to a wider readership. Written by international leaders drawn from major research centres both East and West, this book is an essential addition to scientific libraries serving both specialist and the interested non-specialist reader.
This book addresses the increased role and standing of international law in the Russian legal system through analysis of judicial practice since the adoption of the Russian Constitution in 1993. The issue of interaction and hierarchy between international and domestic law within the Russian Federation is studied, combining theoretical, legal and institutional elements. Sergey Marochkin explores how methods for incorporating and implementing international law (or reasons for failing to do so) have changed over time, influenced by internal and global policy. The final sections of the book are the most illustrative, examining how 'the rule of law’ remains subordinate to ‘the rule of politics’, both at the domestic and global level.
This book is the first book dealing with structural crystallography of inorganic oxysalts in general. A special emphasis is placed upon structural topology and methods of its description. The latter include graph theory, nets, 2-D and 3-D tilings, polyhedra, etc. The structures considered range from minerals to organically templated oxysalts, for all of which this book provides a unified approach to structure interpretation and classification. Most of the structures have been analysed from the proposed viewpoint for the first time and it has been shown that they possess the same topological genealogy and relationships, sometimes despite their obvious chemical differences. In order to expand the range of oxysalts considered, the book offers not only traditional schemes but also alternative approaches such as anion topologis, anion-centered polyhedra and cation arrays. As such, this book can be considered as a comprehensive introduction into the amazingly complex and diverse world of inorganic oxysalts.
The organization of the material is presented as follows: This introductory chapter I represents a theoretical analysis of the computational algorithms for a numerical solution of the basic equations in continuum mechanics. In this chapter, the general requirements for computational grids, discretization, and iterative methods for black-box software are examined. Finally, a concept of a two-grid algorithm for (de-)coupled solving multidimensional non-linear (initial-)boundary value problems in continuum mechanics (multiphysics simulation) in complex domains is presented. Chapter II contains descriptions of the sequential Robust Multigrid Technique which is developed as a general-purpose solver in black-box codes. This chapter presents the main components of the Robust Multigrid Technique (RMT) used in the two-grid algorithm (Chapter I) to compute the auxiliary (structured) grid correction. This includes the generation of multigrid structures, computation of index mapping, and integral evaluation. Finite volume discretization on the multigrid structures will be explained by studying a 1D linear model problem. In addition, the algorithmic complexity of RMT and black-box optimization of the problem-dependent components of RMT are analysed. Chapter III provides a description of parallel RMT. This chapter introduces parallel RMT-based algorithms for solving the boundary value problems and initial-boundary value problems in unified manner. Section 1 presents a comparative analysis of the parallel RMT and the sequential V-cycle. Sections 2 and 3 present a geometric and an algebraic parallelism of RMT, i.e. parallelization of the smoothing iterations on the coarse and the levels. A parallel multigrid cycle will be considered in Section 4. A parallel RMT for the time-dependent problems is given in Section 5. Finally, the basic properties of parallel RMT will be summarized in Section 6. Theoretical aspects of the used algorithms for solving multidimensional problems are discussed in Chapters IV. This chapter contains the theoretical aspects of the algorithms used for the numerical solving of the resulting system of linear algebraic equations obtained from discrete multidimensional (initial-)boundary value problems.
This book discusses the architecture of modern automated systems for spectrum monitoring including automation components: technical means for spectrum monitoring, special software and engineering infrastructure. The problems of automated system development for search and localization of unauthorized radio emission sources in open localities, mathematical methods and algorithms for modulation of parameter measurements for wireless communication as well as issues of identification and localization of radio emission sources are considered. Constructive solutions and modern technical means for radio monitoring and their application are given. Numerous examples are described for the implementation of automated systems, digital radio receivers and radio direction-finders, analyzers of parameters for GSM, CDMA, LTE, DVB-T/T2, Wi-Fi, DMR, P25, TETRA and DECT signals. Practical implementations of the described methods are presented in applied software packages and in radio monitoring equipment.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.