The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany
This is the second volume of Nonlinear Equations with Small Parameter containing new methods of construction of global asymptotics of solutions to nonlinear equations with small parameter. They allow one to match asymptotics of various properties with each other in transition regions and to get unified formulas for connection of characteristic parameters of approximate solutions. This approach underlies modern asymptotic methods and gives a deep insight into crucial nonlinear phenomena. These are beginnings of chaos in dynamical systems, incipient solitary and shock waves, oscillatory processes in crystals, engineering constructions and quantum systems. Apart from independent interest the approximate solutions serve as a foolproof basis for testing numerical algorithms. The second volume will be related to partial differential equations.
The global biosensors industry is approaching towards multi-billion market. The modern biosensors market growth is driven by the continuous technological advancements in the biosensors ecosystem, increase in the use of biosensors for nonmedical applications, lucrative growth in point-of-care diagnostics, and rise in the demand for glucose monitoring systems. Increasing applications in diagnosis of various diseases and development of nanoparticle based electrochemical biosensors significantly stimulates growth of biosensors industry. The second volume of 'Advances in Biosensors: Reviews', Book Series contains six chapters written by 24 authors from 7 countries: Brazil, China, Denmark, Japan, South Africa, Sweden and Ukraine.
This book presents methods to improve information security for protected communication. It combines and applies interdisciplinary scientific engineering concepts, including cryptography, chaos theory, nonlinear and singular optics, radio-electronics and self-changing artificial systems. It also introduces additional ways to improve information security using optical vortices as information carriers and self-controlled nonlinearity, with nonlinearity playing a key "evolving" role. The proposed solutions allow the universal phenomenon of deterministic chaos to be discussed in the context of information security problems on the basis of examples of both electronic and optical systems. Further, the book presents the vortex detector and communication systems and describes mathematical models of the chaos oscillator as a coder in the synchronous chaotic communication and appropriate decoders, demonstrating their efficiency both analytically and experimentally. Lastly it discusses the cryptologic features of analyzed systems and suggests a series of new structures for confident communication.
This book covers planning and maintenance of digital power line carrier (DPLC) channels along high voltage 35-750 kV alternate current power lines, providing readers with an introduction to the relevant industry standards, structure, and construction of DPLC equipment. Coverage includes DPLC equipment use in digital transmitting systems, including digital modulation and coding, channel equalization, and echo cancelling; DPLC multiplexing systems and network elements; different characteristics of high voltage power lines as media for high frequency PLC signals transmission; and planning of DPLC channels. Practicing engineers and researchers involved in the development, design, and application of high voltage power line carrier channels, as well as students studying communications and electric power grids, will find this book to be a valuable reference guide.
In this broad-ranging and deeply researched second book, Sergey Radchenko gracefully narrates and analyzes the end of the Cold War in Asia. Radchenko sheds new light on the actions of Gorbachev, Deng Xiaoping, Margaret Thatcher, Boris Yeltsin, and George H.W. Bush, among others.
Electron-Ion-Plasma Modification of a Hypereutectic Al-Si Alloy details theoretical and experimental research and computer simulation of structural phase transformations in AlSi10Mn2Ni Silumin on different scale levels under electroexplosion alloying, electron beam processing and electron-plasma alloying at the nanolevel in order to create new materials. The authors summarize and analyze more than 10 years of research on the electron-ion-plasma effect on strength properties and structure-phase states’ transformations of hypoeutectic Silumin. Key Features: Details physical and mathematical models of mechanisms of surface layer hardening under conditions of varying energy effects Offers insights into improved strength characteristics of Silumin Explores optimal processing modes for increased strength and improved tribological characteristics This book is a valuable resource to researchers and engineers involved with the modification of light alloy surfaces for the automotive and aeronautical industry.
Heavy-duty wheeled vehicles (HDWVs) are all-wheel-drive vehicles that carry 25 tons or more and have three or more axles. They transport heavy, bulky cargo such as raw minerals, timber, construction materials, pre-fabricated modules, weapons, combat vehicles, and more. HDWVs are used in a variety of industries (mining, logging, construction, energy) and are critical to a country’s economy and defense. These vehicles have unique development requirements due to their high loads, huge dimensions, and specific operating conditions. Hauling efficiencies can be improved by increasing vehicle load capacity; however capacities are influenced by legislation, road limits, and design. Designing HDWVs differs from other multi-purpose all-wheel-drive vehicles. The chassis must be custom-designed to suit the customer’s particular purpose. The number of axles is another variable, as well as which ones are driving and which are driven. Tires are also customizable. Translated by SAE from Russian, this book narrates the history of HDWVs and presents the theory and calculations required to design them. It summarizes results of the authors’ academic research and experience and presents innovative technical solutions used for electric and hydrostatic transmissions, steering systems, and active safety of these vehicles. The book consists of three parts. Part one covers HDWV design history and general design methods, including basic vehicle design, and evaluating HDWV use conditions. Part one also covers general operation requirements and consumer needs, and a brief analysis of structural components of existing HDWVs and prototypes. Part two outlines information needs for designing HDWVs. Part three reviews basic theory and calculation of innovative technical solutions, as well as special requirements for component parts. This comprehensive title provides the following information about HDWVs: • History of design and manufacture. • Manufacturers’ summary design data. • Background data on sample vehicles. • Component calculation examples. • Overview of motion theory, which is useful in design and placement of bulky cargo.
The authors consider dynamic types of inverse problems in which the additional information is given by the trace of the direct problem on a (usually time-like) surface of the domain. They discuss theoretical and numerical background of the finite-difference scheme inversion, the linearization method, the method of Gel'fand-Levitan-Krein, the boundary control method, and the projection method and prove theorems of convergence, conditional stability, and other properties of the mentioned methods.
This proceedings volume presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices. Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, as well as nanotechnology and quantum processing of information, this book gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.
The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.
This proceedings volume presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices. Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, as well as nanotechnology and quantum processing of information, this books gives readers a more complete understanding of the practical uses of nanotechnology and nanostructures.
This book presents the history of globalization as a network-based story in the context of Big History. Departing from the traditional historic discourse, in which communities, cities, and states serve as the main units of analysis, the authors instead trace the historical emergence, growth, interconnection, and merging of various types of networks that have gradually encompassed the globe. They also focus on the development of certain ideas, processes, institutions, and phenomena that spread through those networks to become truly global. The book specifies five macro-periods in the history of globalization and comprehensively covers the first four, from roughly the 9th – 7th millennia BC to World War I. For each period, it identifies the most important network-related developments that facilitated (or even spurred on) such transitions and had the greatest impacts on the history of globalization. By analyzing the world system's transition to new levels of complexity and connectivity, the book provides valuable insights into the course of Big History and the evolution of human societies.
This book presents a systematic treatment of the Rademacher system, one of the most important unifying concepts in mathematics, and includes a number of recent important and beautiful results related to the Rademacher functions. The book discusses the relationship between the properties of the Rademacher system and geometry of some function spaces. It consists of three parts, in which this system is considered respectively in Lp-spaces, in general symmetric spaces and in certain classes of non-symmetric spaces (BMO, Paley, Cesaro, Morrey). The presentation is clear and transparent, providing all main results with detailed proofs. Moreover, literary and historical comments are given at the end of each chapter. This book will be suitable for graduate students and researchers interested in functional analysis, theory of functions and geometry of Banach spaces.
For the first time, the Micropolar Theory of Elasticity is applied to solving a wide variety of problems connected to the specifics of nanomaterials. Namely, their unique physical-mechanical characteristics and behaviors under various stress-induced conditions. These theories have been constructed based on the equations of the classical theory of elasticity as well as other equations that have till now remained untouched in their application to molecular theories of solid deformable media. The book also introduces a new applied micropolar theory of thin shells which is based on Cosserat's pseudo-continuum. It explores the theory’s application to a category of nanomaterial shells and plates previously neglected from classical theories due to their unconventional size and structure. Theoretical results are accompanied by solutions of certain problems, essential for various applications. The book consists of six chapters. The first chapter is a review of the essential data on the non-symmetric theory of elasticity. The second and third chapters are devoted to various theories of plate bending and solutions to some basic problems. Chapter four refers to membrane or, so-called, momentary shell theory. Chapter five deals with the theory of very shallow shells. Finally, chapter six presents the geometry of the nonlinear theory of plates and the theory of very shallow shells. The book is intended for researchers, postgraduate students, and engineers, interested in the design of structures from nanomaterials and in the problems of mechanics of deformable bodies, theories of shells and plates, and their applications in micromechanics.
Moscow has a rich tradition of successful math circles, to the extent that many other circles are modeled on them. This book presents materials used during the course of one year in a math circle organized by mathematics faculty at Moscow State University, and also used at the mathematics magnet school known as Moscow School Number 57. Each problem set has a similar structure: it combines review material with a new topic, offering problems in a range of difficulty levels. This time-tested pattern has proved its effectiveness in engaging all students and helping them master new material while building on earlier knowledge. The introduction describes in detail how the math circles at Moscow State University are run. Dorichenko describes how the early sessions differ from later sessions, how to choose problems, and what sorts of difficulties may arise when running a circle. The book also includes a selection of problems used in the competition known as the Mathematical Maze, a mathematical story based on actual lessons with students, and an addendum on the San Jose Mathematical Circle, which is run in the Russian style. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Proceedings of the Third International Conference on Advanced Composite Materials and Technologies for Aerospace Applications held on May 13-16, 2013, Wrexham, North Wales, United Kingdom
The importance of accuracy verification methods was understood at the very beginning of the development of numerical analysis. Recent decades have seen a rapid growth of results related to adaptive numerical methods and a posteriori estimates. However, in this important area there often exists a noticeable gap between mathematicians creating the theory and researchers developing applied algorithms that could be used in engineering and scientific computations for guaranteed and efficient error control. The goals of the book are to (1) give a transparent explanation of the underlying mathematical theory in a style accessible not only to advanced numerical analysts but also to engineers and students; (2) present detailed step-by-step algorithms that follow from a theory; (3) discuss their advantages and drawbacks, areas of applicability, give recommendations and examples.
This book describes extensions of Sudakov's classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables. While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
81/2 x 11 128 pgs 150 color & b&w photos For decades the Soviet Union and now Russia have held leading positions in the development of a special class of vehicles that are neither aircraft nor ships or both at once. Known as wing-in-ground effect (WIGE) craft or by their Russian name of ekranoplan, these vehicles combined the best of both worlds, operating on the borderline between the sky and the sea, offering the speed of an aircraft coupled with better operating economics and the ability to operate pretty much anywhere on the world's waterways. As such they promptly attracted the attention of the military and thus have been veiled in secrecy until recently.The book describes in detail the many series of WIGE vehicles developed by various design bureaus, including the Orlyonok, the only ekranoplan to see squadron service, the missile-armed Loon and the famous and awesome KM, or Caspian Sea Monster, which first attracted the attention of the West to these developments.
This book covers planning and maintenance of digital power line carrier (DPLC) channels along high voltage 35-750 kV alternate current power lines, providing readers with an introduction to the relevant industry standards, structure, and construction of DPLC equipment. Coverage includes DPLC equipment use in digital transmitting systems, including digital modulation and coding, channel equalization, and echo cancelling; DPLC multiplexing systems and network elements; different characteristics of high voltage power lines as media for high frequency PLC signals transmission; and planning of DPLC channels. Practicing engineers and researchers involved in the development, design, and application of high voltage power line carrier channels, as well as students studying communications and electric power grids, will find this book to be a valuable reference guide.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.