This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
Et moi *.... si j'avait su comment en revenir. One service mathema tics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
This book discusses the tribological, rheological and optical properties of liquid-crystal nanomaterials as well as lubricant media. It also describes the formation of liquid-crystal materials and the application of cholesteric liquid-crystal compounds in technical friction units and in human and animal joints. Further, it shows the connection between the tribological and other physical properties of liquid-crystal cholesterol compounds and develops a lubricity conceptual model of cholesteric–nematic, liquid-crystalline nanostructures on the basis of physical and energetic interpretations. This general model is valid for all surfaces and friction pairs, including biopolymers, and could lead to applications of cholesteric liquid-crystalline nanomaterials in different friction units and tribosystems as well as in the treatment of joint diseases.
This book explores non-standard processes in complex electrochemical systems, covering the structure and phase composition of modified alloys, saturation kinetics, and properties of surface layers. It also investigates the plasma electrolytic polishing of many alloys. The book presents the physicist with conditions of heating metals up to 1000 °C inside a solution, the chemist with reactions in vapour-gaseous media and on the surface of an electrode, and the metal scientist with the diffusion saturation of metals with nitrogen, carbon and boron. It will also appeal to engineers, university and college professors, and other researchers in related fields.
Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics is the first book to provide a systematic construction of exact solutions via linear invariant subspaces for nonlinear differential operators. Acting as a guide to nonlinear evolution equations and models from physics and mechanics, the book focuses on the existence of new exact solutions on linear invariant subspaces for nonlinear operators and their crucial new properties. This practical reference deals with various partial differential equations (PDEs) and models that exhibit some common nonlinear invariant features. It begins with classical as well as more recent examples of solutions on invariant subspaces. In the remainder of the book, the authors develop several techniques for constructing exact solutions of various nonlinear PDEs, including reaction-diffusion and gas dynamics models, thin-film and Kuramoto-Sivashinsky equations, nonlinear dispersion (compacton) equations, KdV-type and Harry Dym models, quasilinear magma equations, and Green-Naghdi equations. Using exact solutions, they describe the evolution properties of blow-up or extinction phenomena, finite interface propagation, and the oscillatory, changing sign behavior of weak solutions near interfaces for nonlinear PDEs of various types and orders. The techniques surveyed in Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics serve as a preliminary introduction to the general theory of nonlinear evolution PDEs of different orders and types.
This book presents a 360-degree picture of the world of insects and explores how their existence affects our lives: the "good, bad, and ugly" aspects of their interactions with humankind. It provides a lucid introductory text for beginning undergraduate students in the life sciences, particularly those pursuing beginner courses in entomology, agriculture, and botany.
Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). Among the special applications addressed in this second volume are: stability of motion, nonlinear oscillations, dynamics and statics of the Stewart platform, mechanics under random forces, elements of control theory, relations between nonholonomic mechanics and the control theory, vibration and autobalancing of rotor systems, physical theory of impact, statics and dynamics of a thin rod. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.
This book discusses how the increased emanation of radon and other gases from the Earth’s crust in the vicinity of active tectonic faults triggers a chain of physical processes and chemical reactions in the atmospheric boundary layer and the Earth’s ionosphere over an earthquake area several days/hours before strong seismic shocks occur. It presents the two main concepts involved in this mechanism: atmosphere ionization and the global electric circuit. The Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept is strongly supported by experimental data showing the atmospheric and ionospheric precursors for major recent earthquakes including 2004 Sumatra; 2008 Sichuan, China; 2011 Tohoku, Japan; and 2015 Nepal. The book not only addresses the theoretical considerations but also includes information on experimental techniques used for precursor observations based on the space-borne systems. Providing practical methods of precursor identification and interpretation, it is an excellent textbook for graduate courses in geophysics, earthquake science, atmospheric physics and remote sensing. Moreover, it offers a wealth of information for scientists and experts from governmental and international agencies working in the fields of natural-disaster mitigation, response and recovery.
One of the directions of nanotechnology is the production of nanopowders (NPs). Nanopowders, according to the currently widely used classification of nanomaterials, belong to zero-dimensional systems in which the limitation of wave functions occurs in all three directions. Biological methods are considered the most environmentally friendly way to synthesize NPs, but the possibility of biological contamination with mutated microorganisms cannot be ruled out. This book presents a new method for producing simple and complex metal oxide and fluoride NPs, based on the “evaporation-condensation” process using pulsed electron beam evaporation. It presents the results of more than 10 years of study of the characteristics of NPs produced using the aforementioned method. This eco-friendly method ensures the production of clean NPs, which are mesoporous and suitable for use in various applications such as medicine, spintronics, optoelectronics, dosimeters, photocatalysis, semiconductors, and ultraviolet and blue lasers. Importantly, these NPs have the potential to be used as a drug delivery system and in the creation of new nanostructures that do not contain noble metals. The book will be useful for the researchers in macromolecular science, nanotechnology, chemistry, biology, and medicine, especially those with an interest in drug delivery or cancer therapy.
The book aims to explain the variations of near-Earth plasma observed over seismically active areas several days/hours before strong seismic shocks. It demonstrates how seismo-ionospheric coupling is part of the global electric circuit and shows that the anomalous electric field appearing in active seismic areas is the main carrier of information from the earth into the ionosphere. The discussion of physical mechanisms is based on experimental data. The results can be regarded as the basis for future applications such as short-term earthquake prediction. It proceeds to describe existing complex systems of space-born and ground-based monitoring for electromagnetic and ionospheric precursors of earthquakes, as well as those still under construction. It is an excellent text for courses and contains a wealth of information for those scientists working in the field of natural disaster reduction.
Et moi *.... si j'avait su comment en revenir. One service mathema tics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
This book summarizes the theoretical and experimental studies confirming the concept of the liquid-crystalline nature of boundary lubrication in synovial joints. It is shown that cholesteric liquid crystals in the synovial liquid play a significant role in the mechanism of intra-articular friction reduction. The results of structural, rheological and tribological research of the creation of artificial synovial liquids containing cholesteric liquid crystals in natural synovial liquids are described. These liquid crystals reproduce the lubrication properties of natural synovia and provide a high chondroprotective efficiency. They were tested in osteoarthritis models and in clinical practice.
In 2011, the National Institutes of Health (NIH), in collaboration with leaders from the pharmaceutical industry and the academic community, published a white paper describing the emerging discipline of Quantitative Systems Pharmacology (QSP), and recommended the establishment of NIH-supported interdisciplinary research and training programs for QSP. QSP is still in its infancy, but has tremendous potential to change the way we approach biomedical research. QSP is really the integration of two disciplines that have been increasingly useful in biomedical research; “Systems Biology” and “Quantitative Pharmacology”. Systems Biology is the field of biomedical research that seeks to understand the relationships between genes and biologically active molecules to develop qualitative models of these systems; and Quantitative Pharmacology is the field of biomedical research that seeks to use computer aided modeling and simulation to increase our understanding of the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, and to aid in the design of pre-clinical and clinical experiments. The purpose of QSP modeling is to develop quantitative computer models of biological systems and disease processes, and the effects of drug PK and PD on those systems. QSP models allow testing of numerous potential experiments “in-silico” to eliminate those associated with a low probability of success, avoiding the potential costs of evaluating all of those failed experiments in the real world. At the same time, QSP models allow us to develop our understanding of the interaction between drugs and biological systems in a more systematic and rigorous manner. As the need to be more cost-efficient in the use of research funding increases, biomedical researchers will be required to gain the maximum insight from each experiment that is conducted. This need is even more acute in the pharmaceutical industry, where there is tremendous competition to develop innovative therapies in a highly regulated environment, combined with very high research and development (R&D) costs for bringing new drugs to market (~$1.3 billion/drug). Analogous modeling & simulation approaches have been successfully integrated into other disciplines to improve the fundamental understanding of the science and to improve the efficiency of R&D (e.g., physics, engineering, economics, etc.). The biomedical research community has been slow to integrate computer aided modeling & simulation for many reasons: including the perception that biology and pharmacology are “too complex” and “too variable” to be modeled with mathematical equations; a lack of adequate graduate training programs; and the lack of support from government agencies that fund biomedical research. However, there is an active community of researchers in the pharmaceutical industry, the academic community, and government agencies that develop QSP and quantitative systems biology models and apply them both to better characterize and predict drug pharmacology and disease processes; as well as to improve efficiency and productivity in pharmaceutical R&D.
This book discusses the tribological, rheological and optical properties of liquid-crystal nanomaterials as well as lubricant media. It also describes the formation of liquid-crystal materials and the application of cholesteric liquid-crystal compounds in technical friction units and in human and animal joints. Further, it shows the connection between the tribological and other physical properties of liquid-crystal cholesterol compounds and develops a lubricity conceptual model of cholesteric–nematic, liquid-crystalline nanostructures on the basis of physical and energetic interpretations. This general model is valid for all surfaces and friction pairs, including biopolymers, and could lead to applications of cholesteric liquid-crystalline nanomaterials in different friction units and tribosystems as well as in the treatment of joint diseases.
This book is devoted to a new branch of experimental design theory called simulation experimental design. There are many books devoted either to the theory of experimental design or to system simulation techniques, but in this book an approach to combine both fields is developed. Especially the mathematical theory of such universal variance reduction techniques as splitting and Russian Roulette is explored. The book contains a number of results on regression design theory related to nonlinear problems, the E-optimum criterion and designs which minimize bias. Audience: This volume will be of value to readers interested in systems simulation, applied statistics and numerical methods with basic knowledge of applied statistics and linear algebra.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.