1. Flows and Cascades.- 2. Equivalence Relations.- 3. Spaces of Systems of Differential Equations and of Diffeomorphisms.- 4. Hyperbolic Rest Point.- 5. Periodic Point and Closed Trajectory.- 6. Transversality.- 7. The Kupka-Smale Theorem.- 8. The Closing Lemma.- 9. Necessary Conditions for Structural Stability.- 10. Homoclinic Point.- 11. Morse-Smale Systems.- 12. Hyperbolic Sets.- 13. The Analytic Strong Transversality Condition.- Appendix. Proof of the Grobman-Hartman Theorem.- References.
This book is an introduction to main methods and principal results in the theory of Co(remark: o is upper index!!)-small perturbations of dynamical systems. It is the first comprehensive treatment of this topic. In particular, Co(upper index!)-generic properties of dynamical systems, topological stability, perturbations of attractors, limit sets of domains are discussed. The book contains some new results (Lipschitz shadowing of pseudotrajectories in structurally stable diffeomorphisms for instance). The aim of the author was to simplify and to "visualize" some basic proofs, so the main part of the book is accessible to graduate students in pure and applied mathematics. The book will also be a basic reference for researchers in various fields of dynamical systems and their applications, especially for those who study attractors or pseudotrajectories generated by numerical methods.
Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion. In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.
1. Flows and Cascades.- 2. Equivalence Relations.- 3. Spaces of Systems of Differential Equations and of Diffeomorphisms.- 4. Hyperbolic Rest Point.- 5. Periodic Point and Closed Trajectory.- 6. Transversality.- 7. The Kupka-Smale Theorem.- 8. The Closing Lemma.- 9. Necessary Conditions for Structural Stability.- 10. Homoclinic Point.- 11. Morse-Smale Systems.- 12. Hyperbolic Sets.- 13. The Analytic Strong Transversality Condition.- Appendix. Proof of the Grobman-Hartman Theorem.- References.
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.