Quantum phase transitions, driven by quantum fluctuations, exhibit intriguing features offering the possibility of potentially new applications, e.g. in quantum information sciences. Major advances have been made in both theoretical and experimental investigations of the nature and behavior of quantum phases and transitions in cooperatively interacting many-body quantum systems. For modeling purposes, most of the current innovative and successful research in this field has been obtained by either directly or indirectly using the insights provided by quantum (or transverse field) Ising models because of the separability of the cooperative interaction from the tunable transverse field or tunneling term in the relevant Hamiltonian. Also, a number of condensed matter systems can be modeled accurately in this approach, hence granting the possibility to compare advanced models with actual experimental results. This work introduces these quantum Ising models and analyses them both theoretically and numerically in great detail. With its tutorial approach the book addresses above all young researchers who wish to enter the field and are in search of a suitable and self-contained text, yet it will also serve as a valuable reference work for all active researchers in this area.
This book elucidates fascinating electronic phenomena of unusual Bi2-square net in layered R2O2Bi (R: rare earth) compounds using two approaches: the fabrication of epitaxial thin films and the synthesis of bulk polycrystalline powders. The Bi2-square net compounds are a promising platform to explore exotic physical properties originating from the interplay between a two-dimensional electronic state and strong spin–orbit coupling; however, there are few reports on Bi2-square net compounds due to the instability of unusual electronic configurations. The book presents the development of synthetic routes for R2O2Bi compounds, such as novel solid phase epitaxy techniques and chemical control of crystal structure, demonstrating the intrinsic physical properties of Bi2-square net for the first time. The most notable finding is the successful induction of two-dimensional superconductivity in Bi2-square net with the coexistence of rich electronic phases. The book also discusses the superconducting mechanisms and the effect of R cation substitution in detail and describes the mechanical properties of Bi2-square net. These findings overturn the results of previous studies of R2O2Bi. The book sheds light on hidden layered compounds, representing a significant advance in the field.
Since the ELITE GERMAN METHOD was first launched in 2006 over 5.000 people from 50 countries have mastered the German language and use their minds at a deeper and more effective level. BASED ON EXTRAORDINARY LIVE ONLINE COURSES A1 C2 WITH THE INTANGIBLE CAPITAL OF TRUST & COMMITMENT IN THIS STEP-BY-STEP GUIDE YOU WILL LEARN How our students learn speaking from the first online live meeting How to create correct sentences with ease and fun How to eliminate 70% of analysis How to speak German like a native and increase your status. Forget the outdated methods and stop wasting time with complex grammar rules Whether your dream is getting the job you deserve by unlocking your value, understanding your co-workers, communicating with your German in-laws, your kid's teachers, classmates, and parents, or just speaking fluently with ease, this book is the blueprint. www.elitegerman.com
Quantum phase transitions, driven by quantum fluctuations, exhibit intriguing features offering the possibility of potentially new applications, e.g. in quantum information sciences. Major advances have been made in both theoretical and experimental investigations of the nature and behavior of quantum phases and transitions in cooperatively interacting many-body quantum systems. For modeling purposes, most of the current innovative and successful research in this field has been obtained by either directly or indirectly using the insights provided by quantum (or transverse field) Ising models because of the separability of the cooperative interaction from the tunable transverse field or tunneling term in the relevant Hamiltonian. Also, a number of condensed matter systems can be modeled accurately in this approach, hence granting the possibility to compare advanced models with actual experimental results. This work introduces these quantum Ising models and analyses them both theoretically and numerically in great detail. With its tutorial approach the book addresses above all young researchers who wish to enter the field and are in search of a suitable and self-contained text, yet it will also serve as a valuable reference work for all active researchers in this area.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.