The literature in polymerization reaction engineering has bloomed sufficiently in the last several years to justify our attempt in putting together this book. Rather than offer a comprehensive treatment of the entire field, thereby duplicating earlier texts as well as some ongoing bookwriting efforts, we decided to narrow down our aim to step growth polymerization systems. This not only provides us the lUxury of a more elaborate presentation within the constraints of production costs, but also enables us to remain on somewhat familiar terrain. The style and format we have selected are those of a textbook. The first six chapters present the principles of step growth polymerization. These are quite general, and can easily be applied in such diverse and emerging fields as polymerization applications in photolithography and microelec tronics. A detailed discussion of several important step growth polymeriz ations follows in the next five chapters. One could cover the first six chapters of this book in about six to eight weeks of a three-credit graduate course on polymerization reactors, with the other chapters assigned for reading. This could be followed by a discussion of chain-growth and other polymeriz ations, with which our material blends well. Alternately, the entire contents of this book could be covered in a course on step growth systems alone.
This Book Is Intended To Be A Text For Either A First Or A Second Course In Numerical Methods For Students In All Engineering Disciplines. Difficult Concepts, Which Usually Pose Problems To Students Are Explained In Detail And Illustrated With Solved Examples. Enough Elementary Material That Could Be Covered In The First-Level Course Is Included, For Example, Methods For Solving Linear And Nonlinear Algebraic Equations, Interpolation, Differentiation, Integration, And Simple Techniques For Integrating Odes And Pdes (Ordinary And Partial Differential Equations).Advanced Techniques And Concepts That Could Form Part Of A Second-Level Course Includegears Method For Solving Ode-Ivps (Initial Value Problems), Stiffness Of Ode- Ivps, Multiplicity Of Solutions, Convergence Characteristics, The Orthogonal Collocation Method For Solving Ode-Bvps (Boundary Value Problems) And Finite Element Techniques. An Extensive Set Of Graded Problems, Often With Hints, Has Been Included.Some Involve Simple Applications Of The Concepts And Can Be Solved Using A Calculator, While Several Are From Real-Life Situations And Require Writing Computer Programs Or Use Of Library Subroutines. Practice On These Is Expected To Build Up The Reader'S Confidence In Developing Large Computer Codes.
2D Materials for Surface Plasmon Resonance-based Sensors offers comprehensive coverage of recent design and development (including processing and fabrication) of 2D materials in the context of plasmonic-based devices. It provides a thorough overview of the basic principles and techniques used in the analysis and design of 2D material-based optical sensor systems. Beginning with the basic concepts of plasmon/plasmonic sensors and mathematical modelling, the authors explain the fundamental properties of 2D materials, including Black Phosphorus (BP), Phosphorene, Graphene, Transition metal dichalcogenides (TMDCs), MXene's and SW-CNT. It also details the applications of these emerging materials in clinical diagnosis and their future trends. This text will be useful for practising engineers, undergraduate and postgraduate students. Key Features Presents the fundamental concepts of 2D material assisted fibre optic and prism based SPR sensor in a student-friendly manner. Includes the recent synthesis and characterization techniques of 2D materials. Provides computational results of recently discovered electronic and optical properties of the 2D materials along with their effectiveness in the field of plasmonic sensors. Presents emerging applications of novel 2D material-based plasmonic sensors in the field of chemical, bio-chemical and biosensing.
This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.
This book focuses on Web recommender systems, offering an overview of approaches to develop these state-of-the-art systems. It also presents algorithmic approaches in the field of Web recommendations by extracting knowledge from Web logs, Web page content and hyperlinks. Recommender systems have been used in diverse applications, including query log mining, social networking, news recommendations and computational advertising, and with the explosive growth of Web content, Web recommendations have become a critical aspect of all search engines. The book discusses how to measure the effectiveness of recommender systems, illustrating the methods with practical case studies. It strikes a balance between fundamental concepts and state-of-the-art technologies, providing readers with valuable insights into Web recommender systems.
The literature in polymerization reaction engineering has bloomed sufficiently in the last several years to justify our attempt in putting together this book. Rather than offer a comprehensive treatment of the entire field, thereby duplicating earlier texts as well as some ongoing bookwriting efforts, we decided to narrow down our aim to step growth polymerization systems. This not only provides us the lUxury of a more elaborate presentation within the constraints of production costs, but also enables us to remain on somewhat familiar terrain. The style and format we have selected are those of a textbook. The first six chapters present the principles of step growth polymerization. These are quite general, and can easily be applied in such diverse and emerging fields as polymerization applications in photolithography and microelec tronics. A detailed discussion of several important step growth polymeriz ations follows in the next five chapters. One could cover the first six chapters of this book in about six to eight weeks of a three-credit graduate course on polymerization reactors, with the other chapters assigned for reading. This could be followed by a discussion of chain-growth and other polymeriz ations, with which our material blends well. Alternately, the entire contents of this book could be covered in a course on step growth systems alone.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.