Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantineapproximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarník's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarník's theorem opens up the Duffin-Schaeffer conjecturefor Hausdorff measures.
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main results provide a unifying treatment of numerous problems in metric Diophantine approximation including those for real, complex and $p$-adic fields associated with both independent and dependent quantities. Applications also include those to Kleinian groups and rational maps. Compared to previous works our framework allows us to successfully remove many unnecessary conditions and strengthen fundamental results such as Jarnik's theorem and the Baker-Schmidt theorem. In particular, the strengthening of Jarnik's theorem opens up the Duffin-Schaeffer conjecture for Hausdorff measures.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.