This book presents state-of-the-art research on robust resource allocation in current and future wireless networks. The authors describe the nominal resource allocation problems in wireless networks and explain why introducing robustness in such networks is desirable. Then, depending on the objectives of the problem, namely maximizing the social utility or the per-user utility, cooperative or competitive approaches are explained and their corresponding robust problems are considered in detail. For each approach, the costs and benefits of robust schemes are discussed and the algorithms for reducing their costs and improving their benefits are presented. Considering the fact that such problems are inherently non-convex and intractable, a taxonomy of different relaxation techniques is presented, and applications of such techniques are shown via several examples throughout the book. Finally, the authors argue that resource allocation continues to be an important issue in future wireless networks, and propose specific problems for future research.
There have been recent advancements in wireless network technologies such as wireless virtualization to accommodate the exponential growth in demand, as well as to increase energy and infrastructure efficiencies. This SpringerBrief discusses the user-association and resource-allocation aspects in Virtualized Wireless Networks (VWNs) and highlights key technology innovations to meet their requirements. Various issues in practical implementation of VWNs are discussed along with potential techniques such as Massive MIMO, Cloud-Radio Access Network (C-RAN), and non-orthogonal multiple access (NOMA). This SpringerBrief will target researchers and professionals working on current and next-generation wireless networks. The content is also valuable for advanced-level students interested in wireless communications and signal processing for communications.
This book presents state-of-the-art research on robust resource allocation in current and future wireless networks. The authors describe the nominal resource allocation problems in wireless networks and explain why introducing robustness in such networks is desirable. Then, depending on the objectives of the problem, namely maximizing the social utility or the per-user utility, cooperative or competitive approaches are explained and their corresponding robust problems are considered in detail. For each approach, the costs and benefits of robust schemes are discussed and the algorithms for reducing their costs and improving their benefits are presented. Considering the fact that such problems are inherently non-convex and intractable, a taxonomy of different relaxation techniques is presented, and applications of such techniques are shown via several examples throughout the book. Finally, the authors argue that resource allocation continues to be an important issue in future wireless networks, and propose specific problems for future research.
There have been recent advancements in wireless network technologies such as wireless virtualization to accommodate the exponential growth in demand, as well as to increase energy and infrastructure efficiencies. This SpringerBrief discusses the user-association and resource-allocation aspects in Virtualized Wireless Networks (VWNs) and highlights key technology innovations to meet their requirements. Various issues in practical implementation of VWNs are discussed along with potential techniques such as Massive MIMO, Cloud-Radio Access Network (C-RAN), and non-orthogonal multiple access (NOMA). This SpringerBrief will target researchers and professionals working on current and next-generation wireless networks. The content is also valuable for advanced-level students interested in wireless communications and signal processing for communications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.