Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose,which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means,andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied herein.
This book discusses recent theoretical developments in agglomerative hierarchical clustering. The general understanding of agglomerative hierarchical clustering is that its theory was completed long ago and there is no room for further methodological studies, at least in its fundamental structure. This book has been planned counter to that view: it will show that there are possibilities for further theoretical studies and they will be not only for methodological interests but also for usefulness in real applications. When compared with traditional textbooks, the present book has several notable features. First, standard linkage methods and agglomerative procedure are described by a general algorithm in which dendrogram output is expressed by a recursive subprogram. That subprogram describes an abstract tree structure, which is used for a two-stage linkage method for a greater number of objects. A fundamental theorem for single linkage using a fuzzy graph is proved, which uncovers several theoretical features of single linkage. Other theoretical properties such as dendrogram reversals are discussed. New methods using positive-definite kernels are considered, and some properties of the Ward method using kernels are studied. Overall, theoretical features are discussed, but the results are useful as well for application-oriented users of agglomerative clustering.
This book discusses recent theoretical developments in agglomerative hierarchical clustering. The general understanding of agglomerative hierarchical clustering is that its theory was completed long ago and there is no room for further methodological studies, at least in its fundamental structure. This book has been planned counter to that view: it will show that there are possibilities for further theoretical studies and they will be not only for methodological interests but also for usefulness in real applications. When compared with traditional textbooks, the present book has several notable features. First, standard linkage methods and agglomerative procedure are described by a general algorithm in which dendrogram output is expressed by a recursive subprogram. That subprogram describes an abstract tree structure, which is used for a two-stage linkage method for a greater number of objects. A fundamental theorem for single linkage using a fuzzy graph is proved, which uncovers several theoretical features of single linkage. Other theoretical properties such as dendrogram reversals are discussed. New methods using positive-definite kernels are considered, and some properties of the Ward method using kernels are studied. Overall, theoretical features are discussed, but the results are useful as well for application-oriented users of agglomerative clustering.
Recently many researchers are working on cluster analysis as a main tool for exploratory data analysis and data mining. A notable feature is that specialists in di?erent ?elds of sciences are considering the tool of data clustering to be useful. A major reason is that clustering algorithms and software are ?exible in thesensethatdi?erentmathematicalframeworksareemployedinthealgorithms and a user can select a suitable method according to his application. Moreover clusteringalgorithmshavedi?erentoutputsrangingfromtheolddendrogramsof agglomerativeclustering to more recent self-organizingmaps. Thus, a researcher or user can choose an appropriate output suited to his purpose,which is another ?exibility of the methods of clustering. An old and still most popular method is the K-means which use K cluster centers. A group of data is gathered around a cluster center and thus forms a cluster. The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reasonwhy we concentrate on fuzzy c-means is that most methodology and application studies infuzzy clusteringusefuzzy c-means,andfuzzy c-meansshouldbe consideredto beamajortechniqueofclusteringingeneral,regardlesswhetheroneisinterested in fuzzy methods or not. Moreover recent advances in clustering techniques are rapid and we requirea new textbook that includes recent algorithms.We should also note that several books have recently been published but the contents do not include some methods studied herein.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.