This book provides comprehensive coverage of fundamentals of database management system. It contains a detailed description on Relational Database Management System Concepts. There are a variety of solved examples and review questions with solutions. This book is for those who require a better understanding of relational data modeling, its purpose, its nature, and the standards used in creating relational data model.
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in data base systems and new data base applications and is also designed to give a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, AI, machine learning, NN, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization. This book is intended for a wide audience of readers who are not necessarily experts in data warehousing and data mining, but are interested in receiving a general introduction to these areas and their many practical applications. Since data mining technology has become a hot topic not only among academic students but also for decision makers, it provides valuable hidden business and scientific intelligence from a large amount of historical data. It is also written for technical managers and executives as well as for technologists interested in learning about data mining.
This book provides a broad-ranging, but detailed overview of the basics of Fuzzy Logic. The fundamentals of Fuzzy Logic are discussed in detail, and illustrated with various solved examples. The book also deals with applications of Fuzzy Logic, to help readers more fully understand the concepts involved. Solutions to the problems are programmed using MATLAB 6.0, with simulated results. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
This book provides a detailed description of machine learning algorithms in data analytics, data science life cycle, Python for machine learning, linear regression, logistic regression, and so forth. It addresses the concepts of machine learning in a practical sense providing complete code and implementation for real-world examples in electrical, oil and gas, e-commerce, and hi-tech industries. The focus is on Python programming for machine learning and patterns involved in decision science for handling data. Features: Explains the basic concepts of Python and its role in machine learning. Provides comprehensive coverage of feature engineering including real-time case studies. Perceives the structural patterns with reference to data science and statistics and analytics. Includes machine learning-based structured exercises. Appreciates different algorithmic concepts of machine learning including unsupervised, supervised, and reinforcement learning. This book is aimed at researchers, professionals, and graduate students in data science, machine learning, computer science, and electrical and computer engineering.
This book provides a solid understanding of virtual instrumentation concepts, its purpose, its nature, and the applications developed using the National Instrument’s LabVIEW software. Coverage includes many worked-out examples and discusses new technologies and challenges of virtual instrumentation systems in applications in such areas as control systems, power systems, networking, robotics, communication, and artificial intelligence.
Offering a wide range of programming examples implemented in MATLAB, Computational Intelligence Paradigms: Theory and Applications Using MATLAB presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and pr
Considered one of the most innovative research directions, computational intelligence (CI) embraces techniques that use global search optimization, machine learning, approximate reasoning, and connectionist systems to develop efficient, robust, and easy-to-use solutions amidst multiple decision variables, complex constraints, and tumultuous environments. CI techniques involve a combination of learning, adaptation, and evolution used for intelligent applications. Computational Intelligence Paradigms for Optimization Problems Using MATLAB®/ Simulink® explores the performance of CI in terms of knowledge representation, adaptability, optimality, and processing speed for different real-world optimization problems. Focusing on the practical implementation of CI techniques, this book: Discusses the role of CI paradigms in engineering applications such as unit commitment and economic load dispatch, harmonic reduction, load frequency control and automatic voltage regulation, job shop scheduling, multidepot vehicle routing, and digital image watermarking Explains the impact of CI on power systems, control systems, industrial automation, and image processing through the above-mentioned applications Shows how to apply CI algorithms to constraint-based optimization problems using MATLAB® m-files and Simulink® models Includes experimental analyses and results of test systems Computational Intelligence Paradigms for Optimization Problems Using MATLAB®/ Simulink® provides a valuable reference for industry professionals and advanced undergraduate, postgraduate, and research students.
The book has been prepared keeping in view the course requirements of seed science and technology for undergraduate students at various institutions. The large volumes of materials are available for this subject. An attempt has been made to consolidate the scattered information and presented in a simple format. This publication describes the procedures involved in the production of quality seeds of 40 horticultural crops. The techniques involved in the certified and foundation stages of seed production from seed selection to storage including the quality standards and appropriate storage methods are explained in detail in this publication. From this the readers will get knowledge about seed production of horticultural crops. It is hoped that the publication will be useful for vegetable seed growers, research workers, teachers, students, planners, NGOs and extension personnel. We hope that this book “Scientific Seed Production of Horticultural Crops” will be helpful to our readers of this subject.
This book provides a highly accessible introduction to evolutionary computation. It details basic concepts, highlights several applications of evolutionary computation, and includes solved problems using MATLAB software and C/C++. This book also outlines some ideas on when genetic algorithms and genetic programming should be used. The most difficult part of using a genetic algorithm is how to encode the population, and the author discusses various ways to do this.
The readers will get knowledge about seeds, science and technology involved in this subject. Seeds are fertilised mature ovules shaped through sexual reproduction in plants. It is the cheapest and key input in agriculture. It is estimated that good quality seeds of improved varieties can contribute about 20-25% increase in yield. Seed technology is an interdisciplinary science, involves such activities as variety development, evaluation and release seed development, seed processing, seed storage, seed testing, seed certification, seed quality control and seed marketing etc., through which the genetic and physical characteristic of seeds could be improved. Each topic was discussed in separate chapter and this book will prove extremely useful to its readers.
Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms: A Practical Approach Using Python describes the deep learning models and ensemble approaches applied to decision-making problems. The authors have addressed the concepts of deep learning, convolutional neural networks, recurrent neural networks, and ensemble learning in a practical sense providing complete code and implementation for several real-world examples. The authors of this book teach the concepts of machine learning for undergraduate and graduate-level classes and have worked with Fortune 500 clients to formulate data analytics strategies and operationalize these strategies. The book will benefit information professionals, programmers, consultants, professors, students, and industry experts who seek a variety of real-world illustrations with an implementation based on machine learning algorithms"--
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.