Machine Learning in Manufacturing: Quality 4.0 and the Zero Defects Vision reviews process monitoring based on machine learning algorithms and the technologies of the fourth industrial revolution and proposes Learning Quality Control (LQC), the evolution of Statistical Quality Control (SQC). This book identifies 10 big data issues in manufacturing and addresses them using an ad-hoc, 5-step problem-solving strategy that increases the likelihood of successfully deploying this Quality 4.0 initiative. With two case studies using structured and unstructured data, this book explains how to successfully deploy AI in manufacturing and how to move quality standards forward by developing virtually defect-free processes. This book enables engineers to identify Quality 4.0 applications and manufacturing companies to successfully implement Quality 4.0 practices. - Provides an understanding of the most relevant challenges posed to the application of Artificial Intelligence (AI) in manufacturing - Includes analytical developments and applications and merges a quality vision with machine learning algorithms - Features structured and unstructured data case studies to illustrate how to develop intelligent monitoring systems with the capacity to replace manual and visual tasks
A key challenge in science and engineering is to provide a quantitative description of the systems under investigation, leveraging the noisy data collected. Such a description may be a complete mathematical model or a mechanism to return controllers corresponding to new, unseen inputs. Recent advances in the theories are described in detail, along with their applications in engineering. The book aims to develop model-free system analysis and control strategies, i.e., data-driven control from theoretical analysis and engineering applications based only on measured data. The study aims to develop system identification, and combination in advanced control theory, i.e., data-driven control strategy as system and controller are generated from measured data directly. The book reviews the development of system identification and its combination in advanced control theory, i.e., data-driven control strategy, as they all depend on measured data. Firstly, data-driven identification is developed for the closed-loop, nonlinear system and model validation, i.e., obtaining model descriptions from measured data. Secondly, the data-driven idea is combined with some control strategies to be considered data-driven control strategies, such as data-driven model predictive control, data-driven iterative tuning control, and data-driven subspace predictive control. Thirdly data-driven identification and data-driven control strategies are applied to interested engineering. In this context, the book provides algorithms to perform state estimation of dynamical systems from noisy data and some convex optimization algorithms through identification and control problems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.