Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today's photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand. Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to: - Understand the implications of various measurement results and system performance qualifications - Characterize modern optical systems and devices - Select optical devices and subsystems in optical network design and implementation - Design innovative instrumentations for fiber optic systems The 2nd edition of this successful reference has been extensively updated (with 150 new pages) to reflect the advances in the field since publication in 2008 and includes: - A new chapter on fiber-based optical sensors and spectroscopy techniques - A new chapter on measurement uncertainty and error analysis Fiber Optic Measurement Techniques brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems. - The only book to combine explanations of the basic principles with latest techniques to enable the engineer to develop photonic systems of the future - Careful and systematic presentation of measurement methods to help engineers to choose the most appropriate for their application - The latest methods covered, such as real-time optical monitoring and phase coded systems and subsystems, making this the most up-to-date guide to fiber optic measurement
Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections. - Covers fiber-optic communication system fundamentals, design rules and terminologies - Provides students with an understanding of the physical principles and characteristics of passive and active fiber-optic components - Teaches students how to perform fiber-optic system design, performance evaluation and troubleshooting - Includes modern advances in modulation and decoding strategies
Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.
Fiber Optic Measurement Techniques is an indispensable collection of key optical measurement techniques essential for developing and characterizing today's photonic devices and fiber optic systems. The book gives comprehensive and systematic descriptions of various fiber optic measurement methods with the emphasis on the understanding of optoelectronic signal processing methodologies, helping the reader to weigh up the pros and cons of each technique and establish their suitability for the task at hand. Carefully balancing descriptions of principle, operations and optoelectronic circuit implementation, this indispensable resource will enable the engineer to: Understand the implications of various measurement results and system performance qualifications Characterize modern optical systems and devices Select optical devices and subsystems in optical network design and implementation Design innovative instrumentations for fiber optic systems The 2nd edition of this successful reference has been extensively updated (with 150 new pages) to reflect the advances in the field since publication in 2008 and includes: A new chapter on fiber-based optical sensors and spectroscopy techniques A new chapter on measurement uncertainty and error analysis Fiber Optic Measurement Techniques brings together in one volume the fundamental principles with the latest techniques, making it a complete resource for the optical and communications engineer developing future optical devices and fiber optic systems. The only book to combine explanations of the basic principles with latest techniques to enable the engineer to develop photonic systems of the future Careful and systematic presentation of measurement methods to help engineers to choose the most appropriate for their application The latest methods covered, such as real-time optical monitoring and phase coded systems and subsystems, making this the most up-to-date guide to fiber optic measurement
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.