This book contains five theses in analysis, by A C Gilbert, N Saito, W Schlag, T Tao and C M Thiele. It covers a broad spectrum of modern harmonic analysis, from Littlewood-Paley theory (wavelets) to subtle interactions of geometry and Fourier oscillations. The common theme of the theses involves intricate local Fourier (or multiscale) decompositions of functions and operators to account for cumulative properties involving size or structure.
This volume explains how the recent advances in wavelet analysis provide new means for multiresolution analysis and describes its wide array of powerful tools. The book covers variations of the windowed Fourier transform, constructions of special waveforms suitable for specific tasks, the use of redundant representations in reconstruction and enhancement, applications of efficient numerical compression as a tool for fast numerical analysis, and approximation properties of various waveforms in different contexts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.