A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition New chapters on matchings in bipartite graphs, online algorithms, and machine learning New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays 140 new exercises and 22 new problems Reader feedback–informed improvements to old problems Clearer, more personal, and gender-neutral writing style Color added to improve visual presentation Notes, bibliography, and index updated to reflect developments in the field Website with new supplementary material Warning: Avoid counterfeit copies of Introduction to Algorithms by buying only from reputable retailers. Counterfeit and pirated copies are incomplete and contain errors.
This edition has been revised and updated throughout. It includes some new chapters. It features improved treatment of dynamic programming and greedy algorithms as well as a new notion of edge-based flow in the material on flow networks.--[book cover].
The latest edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout. It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, substantial additions to the chapter on recurrence (now called “Divide-and-Conquer”), and an appendix on matrices. It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many exercises and problems have been added for this edition. The international paperback edition is no longer available; the hardcover is available worldwide.
This volume includes some of the key research papers in the area of machine learning produced at MIT and Siemens during a three-year joint research effort. It includes papers on many different styles of machine learning, organized into three parts. Part I, theory, includes three papers on theoretical aspects of machine learning. The first two use the theory of computational complexity to derive some fundamental limits on what isefficiently learnable. The third provides an efficient algorithm for identifying finite automata. Part II, artificial intelligence and symbolic learning methods, includes five papers giving an overview of the state of the art and future developments in the field of machine learning, a subfield of artificial intelligence dealing with automated knowledge acquisition and knowledge revision. Part III, neural and collective computation, includes five papers sampling the theoretical diversity and trends in the vigorous new research field of neural networks: massively parallel symbolic induction, task decomposition through competition, phoneme discrimination, behavior-based learning, and self-repairing neural networks.
This edition has been revised and updated throughout. It includes some new chapters. It features improved treatment of dynamic programming and greedy algorithms as well as a new notion of edge-based flow in the material on flow networks.--[book cover].
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.