This book treats the fundamental issues and algorithmic strategies emerging as the core of the discipline of discrete optimization in a comprehensive and rigorous fashion. Following an introductory chapter on computational complexity, the basic algorithmic results for the two major models of polynomial algorithms are introduced--models using matroids and linear programming. Further chapters treat the major non-polynomial algorithms: branch-and-bound and cutting planes. The text concludes with a chapter on heuristic algorithms.Several appendixes are included which review the fundamental ideas of linear programming, graph theory, and combinatorics--prerequisites for readers of the text. Numerous exercises are included at the end of each chapter.
The goal of the Second Edition is to make the tools of optimization modeling and analysis even more widely accessible to advanced undergraduate and beginning graduate students, as well as to researchers and working practitioners who use it as a reference for self-study. The emphasis lies in developing skills and intuitions that students can apply in real settings or later coursework. Like the first, the Second Edition covers the full scope of optimization (mathematical programming), spanning linear, integer, nonlinear, network, and dynamic programming models and algorithms, in both single and multiobjective contexts. New material adds large-scale, stochastic and complexity topics, while broadly deepening mathematical rigor without sacrificing the original's intuitive style.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.