Sturm-Liouville problems arise naturally in solving technical problems in engineering, physics, and more recently in biology and the social sciences. These problems lead to eigenvalue problems for ordinary and partial differential equations. Sturm-Liouville Problems: Theory and Numerical Implementation addresses, in a unified way, the key issues that must be faced in science and engineering applications when separation of variables, variational methods, or other considerations lead to Sturm-Liouville eigenvalue problems and boundary value problems.
Highly recommended by CHOICE, previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB Approach, Third Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATL
Superb treatment for math and physical science students discusses modern mathematical techniques for setting up and analyzing problems. Discusses partial differential equations of the 1st order, elementary modeling, potential theory, parabolic equations, more. 1988 edition.
Aspects of Integration: Novel Approaches to the Riemann and Lebesgue Integrals is comprised of two parts. The first part is devoted to the Riemann integral, and provides not only a novel approach, but also includes several neat examples that are rarely found in other treatments of Riemann integration. Historical remarks trace the development of integration from the method of exhaustion of Eudoxus and Archimedes, used to evaluate areas related to circles and parabolas, to Riemann’s careful definition of the definite integral, which is a powerful expansion of the method of exhaustion and makes it clear what a definite integral really is. The second part follows the approach of Riesz and Nagy in which the Lebesgue integral is developed without the need for any measure theory. Our approach is novel in part because it uses integrals of continuous functions rather than integrals of step functions as its starting point. This is natural because Riemann integrals of continuous functions occur much more frequently than do integrals of step functions as a precursor to Lebesgue integration. In addition, the approach used here is natural because step functions play no role in the novel development of the Riemann integral in the first part of the book. Our presentation of the Riesz-Nagy approach is significantly more accessible, especially in its discussion of the two key lemmas upon which the approach critically depends, and is more concise than other treatments. Features Presents novel approaches designed to be more accessible than classical presentations A welcome alternative approach to the Riemann integral in undergraduate analysis courses Makes the Lebesgue integral accessible to upper division undergraduate students How completion of the Riemann integral leads to the Lebesgue integral Contains a number of historical insights Gives added perspective to researchers and postgraduates interested in the Riemann and Lebesgue integrals
Peter Gunnarson Rambo, son of Gunnar Petersson, was born in about 1612 in Hisingen, Sweden. He came to America in 1640 and settled in Christiana, New Sweden (now Delaware). He married Brita Mattsdotter 7 April 1647. They had eight children. He died in 1698. HIs daughter, Gertrude Rambo, was born 19 October 1650. She married Anders Bengtsson. Descendants and relatives lived mainly in Pennsylvania, Delaware, Virginia, North Carolina and Ohio.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.