This work covers the required mathematical and theoretical tools required for understanding the Standard Model of particle physics. It explains the accelerator and detector physics which are needed for the experiments that underpin the Standard Model.
Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics. Neural models that describe the spatio-temporal evolution of coarse-grained variables—such as synaptic or firing rate activity in populations of neurons —and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling. - The first focused introduction to the use of nonlinear analysis with an infinite dimensional approach to theoretical neuroscience - Combines functional analysis techniques with nonlinear dynamical systems applied to the study of the brain - Introduces powerful mathematical techniques to manage the dynamics and challenges of infinite systems of equations applied to neuroscience modeling
The fame of the Polish school at Lvov rests with the diverse and fundamental contributions of Polish mathematicians working there during the interwar years. In particular, despite material hardship and without a notable mathematical tradition, the school made major contributions to what is now called functional analysis. The results and names of Banach, Kac, Kuratowski, Mazur, Nikodym, Orlicz, Schauder, Sierpiński, Steinhaus, and Ulam, among others, now appear in all the standard textbooks. The vibrant joie de vivre and singular ambience of Lvov's once scintillating social scene are evocatively recaptured in personal recollections. The heyday of the famous Scottish Café--unquestionably the most mathematically productive cafeteria of all time--and its precious Scottish Book of highly influential problems are described in detail, revealing the special synergy of scholarship and camaraderie that permanently elevated Polish mathematics from utter obscurity to global prominence. This chronicle of the Lvov school--its legacy and the tumultuous historical events which defined its lifespan--will appeal equally to mathematicians, historians, or general readers seeking a cultural and institutional overview of key aspects of twentieth-century Polish mathematics not described anywhere else in the extant English-language literature.
Delving into the deeply enigmatic nature of Artificial Intelligence (AI), AI: Unexplainable, Unpredictable, Uncontrollable explores the various reasons why the field is so challenging. Written by one of the founders of the field of AI safety, this book addresses some of the most fascinating questions facing humanity, including the nature of intelligence, consciousness, values and knowledge. Moving from a broad introduction to the core problems, such as the unpredictability of AI outcomes or the difficulty in explaining AI decisions, this book arrives at more complex questions of ownership and control, conducting an in-depth analysis of potential hazards and unintentional consequences. The book then concludes with philosophical and existential considerations, probing into questions of AI personhood, consciousness, and the distinction between human intelligence and artificial general intelligence (AGI). Bridging the gap between technical intricacies and philosophical musings, AI: Unexplainable, Unpredictable, Uncontrollable appeals to both AI experts and enthusiasts looking for a comprehensive understanding of the field, whilst also being written for a general audience with minimal technical jargon.
The aim of this reference work is to provide the researcher with a comprehensive compilation of all up to now crystallographically identified inorganic substances in only one volume. All data have been processed and critically evaluated by the "Pauling File" editorial team using a unique software package. Each substance is represented in a single row containing information adapted to the number of chemical elements.
Since the discovery of X-ray diffraction in 1913 over 100 000 different inorganic substances (also called compounds or phases) have been structurally characterized. The aim of this reference work is to provide the researcher with a comprehensive compilation of all up to now crystallographically identified inorganic substances in only one volume. All data have been processed and critically evaluated by the "Pauling File" editorial team using a unique software package. Each substance is represented in a single row containing information adapted to the number of chemical elements.
This work covers the required mathematical and theoretical tools required for understanding the Standard Model of particle physics. It explains the accelerator and detector physics which are needed for the experiments that underpin the Standard Model.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.