This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.
Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.
Blending theoretical results with practical applications, this book provides an introduction to random matrix theory and shows how it can be used to tackle a variety of problems in wireless communications. The Stieltjes transform method, free probability theory, combinatoric approaches, deterministic equivalents and spectral analysis methods for statistical inference are all covered from a unique engineering perspective. Detailed mathematical derivations are presented throughout, with thorough explanation of the key results and all fundamental lemmas required for the reader to derive similar calculus on their own. These core theoretical concepts are then applied to a wide range of real-world problems in signal processing and wireless communications, including performance analysis of CDMA, MIMO and multi-cell networks, as well as signal detection and estimation in cognitive radio networks. The rigorous yet intuitive style helps demonstrate to students and researchers alike how to choose the correct approach for obtaining mathematically accurate results.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.