This book mainly discusses the representation theory of the special linear group 8L(2, 1R), and some applications of this theory. In fact the emphasis is on the applications; the working title of the book while it was being writ ten was "Some Things You Can Do with 8L(2). " Some of the applications are outside representation theory, and some are to representation theory it self. The topics outside representation theory are mostly ones of substantial classical importance (Fourier analysis, Laplace equation, Huyghens' prin ciple, Ergodic theory), while the ones inside representation theory mostly concern themes that have been central to Harish-Chandra's development of harmonic analysis on semisimple groups (his restriction theorem, regularity theorem, character formulas, and asymptotic decay of matrix coefficients and temperedness). We hope this mix of topics appeals to nonspecialists in representation theory by illustrating (without an interminable prolegom ena) how representation theory can offer new perspectives on familiar topics and by offering some insight into some important themes in representation theory itself. Especially, we hope this book popularizes Harish-Chandra's restriction formula, which, besides being basic to his work, is simply a beautiful example of Fourier analysis on Euclidean space. We also hope representation theorists will enjoy seeing examples of how their subject can be used and will be stimulated by some of the viewpoints offered on representation-theoretic issues.
This volume carries the same title as that of an international conference held at the National University of Singapore, 9OCo11 January 2006 on the occasion of Roger E. Howe''s 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe''s mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications. Sample Chapter(s). Foreword (21 KB). Chapter 1: The Theta Correspondence Over R (342 KB). Contents: The Theta Correspondence over R (J Adams); The Heisenberg Group, SL (3, R), and Rigidity (A iap et al.); Pfaffians and Strategies for Integer Choice Games (R Evans & N Wallach); When is an L -Function Non-Vanishing in Part of the Critical Strip? (S Gelbart); Cohomological Automorphic Forms on Unitary Groups, II: Period Relations and Values of L -Functions (M Harris); The Inversion Formula and Holomorphic Extension of the Minimal Representation of the Conformal Group (T Kobayashi & G Mano); Classification des S(r)ries Discr tes pour Certains Groupes Classiques p- Adiques (C Moeglin); Some Algebras of Essentially Compact Distributions of a Reductive p -Adic Group (A Moy & M Tadic); Annihilators of Generalized Verma Modules of the Scalar Type for Classical Lie Algebras (T Oshima); Branching to a Maximal Compact Subgroup (D A Vogan, Jr.); Small Semisimple Subalgebras of Semisimple Lie Algebras (J F Willenbring & G J Zuckerman). Readership: Graduate students and research mathematicians in harmonic analysis, group representations, automorphic forms and invariant theory.
Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.
This volume carries the same title as that of an international conference held at the National University of Singapore, 9-11 January 2006 on the occasion of Roger E. Howe's 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe's mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.