Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of the penalization or observation operator--is strictly larger than $\tfrac{3}{2}$, as expressed in terms of fractional powers of the free-dynamics operator. In contrast, established (and rich) optimal control theory [L-T.2] of boundary control parabolic problems and corresponding algebraic Riccati theory requires a combined index of unboundedness strictly less than 1. An additional preliminary serious difficulty to overcome lies at the outset of the program, in establishing that the present highly non-standard OCP--with the aforementioned high level of unboundedness in control and observation operators and subject, moreover, to the additional constraint that the controllers be pointwise tangential--be non-empty; that is, it satisfies the so-called Finite Cost Condition [L-T.2].
This book is devoted to the study of coupled partial differential equation models, which describe complex dynamical systems occurring in modern scientific applications such as fluid/flow-structure interactions. The first chapter provides a general description of a fluid-structure interaction, which is formulated within a realistic framework, where the structure subject to a frictional damping moves within the fluid. The second chapter then offers a multifaceted description, with often surprising results, of the case of the static interface; a case that is argued in the literature to be a good model for small, rapid oscillations of the structure. The third chapter describes flow-structure interaction where the compressible Navier-Stokes equations are replaced by the linearized Euler equation, while the solid is taken as a nonlinear plate, which oscillates in the surrounding gas flow. The final chapter focuses on a the equations of nonlinear acoustics coupled with linear acoustics or elasticity, as they arise in the context of high intensity ultrasound applications.
World Trade Organisation (WTO) trade remedies (antidumping, anti-subsidy and safeguard agreements) are instruments used by WTO members to counter the economic injury caused by dumping, subsidies and the sudden and unforeseen increased imports. They are exceptions to the WTO principle of free trade and to the prohibition for States to react unilaterally to protect their own rights and interests, and as a result they have been accused by some as being the new tools of protectionism. This book analyses of the role and principles of WTO trade remedies in international law. In particular, it focuses on their aims, their structure, and their position within the WTO and more in general, the international legal system. The book considers trade remedies in light of fragmentation theories of international law and addresses the question how, and to what extent WTO law reflects and influences public international law.
First organized in 1981, the WASCOM conference to bring together researchers and scientists from all over the world to discuss problems, promote collaborations and shape future directions for research in the field of stability and wave propagation in continuous media.This book constitutes the proceedings of the 11th edition of the conference, the first of the third millennium. The main topics are: (1) Linear and nonlinear hyperbolic equations, conservation laws and specific aspects of wave propagation; (2) stability of systems of PDEs, with particular reference to those of fluid and solid mechanics; (3) extended thermodynamics and passage from microscopic to macroscopic description of the medium for systems characterized also by inelastic interactions at the kinetic scale.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
1999 AMS-IMS-SIAM Joint Summer Research Conference on Differential Geometric Methods in the Control of Partial Differential Equations, University of Colorado, Boulder, June 27-July 1, 1999
1999 AMS-IMS-SIAM Joint Summer Research Conference on Differential Geometric Methods in the Control of Partial Differential Equations, University of Colorado, Boulder, June 27-July 1, 1999
This volume contains selected papers that were presented at the AMS-IMS-SIAM Joint Summer Research Conference on "Differential Geometric Methods in the Control of Partial Differential Equations", which was held at the University of Colorado in Boulder in June 1999. The aim of the conference was to explore the infusion of differential-geometric methods into the analysis of control theory of partial differential equations, particularly in the challenging case of variable coefficients, where the physical characteristics of the medium vary from point to point. While a mutually profitable link has been long established, for at least 30 years, between differential geometry and control of ordinary differential equations, a comparable relationship between differential geometry and control of partial differential equations (PDEs) is a new and promising topic. Very recent research, just prior to the Colorado conference, supported the expectation that differential geometric methods, when brought to bear on classes of PDE modelling and control problems with variable coefficients, will yield significant mathematical advances. The papers included in this volume - written by specialists in PDEs and control of PDEs as well as by geometers - collectively support the claim that the aims of the conference are being fulfilled. In particular, they endorse the belief that both subjects-differential geometry and control of PDEs-have much to gain by closer interaction with one another. Consequently, further research activities in this area are bound to grow.
In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of the penalization or observation operator--is strictly larger than $\tfrac{3}{2}$, as expressed in terms of fractional powers of the free-dynamics operator. In contrast, established (and rich) optimal control theory [L-T.2] of boundary control parabolic problems and corresponding algebraic Riccati theory requires a combined index of unboundedness strictly less than 1. An additional preliminary serious difficulty to overcome lies at the outset of the program, in establishing that the present highly non-standard OCP--with the aforementioned high level of unboundedness in control and observation operators and subject, moreover, to the additional constraint that the controllers be pointwise tangential--be non-empty; that is, it satisfies the so-called Finite Cost Condition [L-T.2].
This book is devoted to the study of coupled partial differential equation models, which describe complex dynamical systems occurring in modern scientific applications such as fluid/flow-structure interactions. The first chapter provides a general description of a fluid-structure interaction, which is formulated within a realistic framework, where the structure subject to a frictional damping moves within the fluid. The second chapter then offers a multifaceted description, with often surprising results, of the case of the static interface; a case that is argued in the literature to be a good model for small, rapid oscillations of the structure. The third chapter describes flow-structure interaction where the compressible Navier-Stokes equations are replaced by the linearized Euler equation, while the solid is taken as a nonlinear plate, which oscillates in the surrounding gas flow. The final chapter focuses on a the equations of nonlinear acoustics coupled with linear acoustics or elasticity, as they arise in the context of high intensity ultrasound applications.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.