Traditional manufacturing systems rely upon centralized, hierarchical systems that are not responsive enough to the increasing demand for mass customization. Decentralized, or heterarchical, management systems using autonomous agents promise to nullify the limitations of previous solutions. Agent-Based Manufacturing and Control Systems: New
Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety examines methodologies, new models and innovative strategies for the optimization and optimal control of the hydrogen logistic chain, with particular focus on a network of integrated facilities, sources of production, storage systems, infrastructures and the delivery process to the end users through hydrogen refueling stations. The book discusses the main motivations and criteria behind the adoption of hydrogen as an energy carrier or future fuel alternative. It presents current research in hydrogen production processes, especially from renewable energy sources, as well as storage and distribution. The book also reviews methods to model hydrogen demand uncertainties and challenges for the design of the future hydrogen supply chain. The authors go on to explore the network planning of hydrogen infrastructures, the safety and risk issues in hydrogen logistics and their future expectations. Energy engineering professionals, researchers and graduate students will find this a helpful resource to understand the methodologies used to assess the feasibility for developing hydrogen supply chains, hydrogen infrastructure and safety practices. Energy analysts and government agents can benefit from the book's detailed discussion of hydrogen energy applicability. - Describes in detail the current state of the available approaches for the planning and modeling of the hydrogen infrastructure - Discusses safety issues related to hydrogen in different components of its logistic chain and the methodological approach to evaluate risks that results from hydrogen accidents, including a mathematical model to assess the hazard and consequences of an accident scenario of hydrogen in pipelines - Proposes a decision support system for hydrogen energy exploitation, focusing on some specific planning aspects, such as selection of locations with high hydrogen production, based mainly on the use of solar and wind energies - Presents a short-term scenario of hydrogen distribution for automotive use, with a concrete, detailed, operative plan for a network of refueling service stations for the hydrogen economy
Hydrogen Infrastructure for Energy Applications: Production, Storage, Distribution and Safety examines methodologies, new models and innovative strategies for the optimization and optimal control of the hydrogen logistic chain, with particular focus on a network of integrated facilities, sources of production, storage systems, infrastructures and the delivery process to the end users through hydrogen refueling stations. The book discusses the main motivations and criteria behind the adoption of hydrogen as an energy carrier or future fuel alternative. It presents current research in hydrogen production processes, especially from renewable energy sources, as well as storage and distribution. The book also reviews methods to model hydrogen demand uncertainties and challenges for the design of the future hydrogen supply chain. The authors go on to explore the network planning of hydrogen infrastructures, the safety and risk issues in hydrogen logistics and their future expectations. Energy engineering professionals, researchers and graduate students will find this a helpful resource to understand the methodologies used to assess the feasibility for developing hydrogen supply chains, hydrogen infrastructure and safety practices. Energy analysts and government agents can benefit from the book's detailed discussion of hydrogen energy applicability. - Describes in detail the current state of the available approaches for the planning and modeling of the hydrogen infrastructure - Discusses safety issues related to hydrogen in different components of its logistic chain and the methodological approach to evaluate risks that results from hydrogen accidents, including a mathematical model to assess the hazard and consequences of an accident scenario of hydrogen in pipelines - Proposes a decision support system for hydrogen energy exploitation, focusing on some specific planning aspects, such as selection of locations with high hydrogen production, based mainly on the use of solar and wind energies - Presents a short-term scenario of hydrogen distribution for automotive use, with a concrete, detailed, operative plan for a network of refueling service stations for the hydrogen economy
Traditional manufacturing systems rely upon centralized, hierarchical systems that are not responsive enough to the increasing demand for mass customization. Decentralized, or heterarchical, management systems using autonomous agents promise to nullify the limitations of previous solutions. Agent-Based Manufacturing and Control Systems: New
Roberto Saviano is best known for his work on the Italian mafia, but Beauty and the Inferno also tackles universal themes with great insight and humanity, with urgency, and often with anger. This important collection includes essays on the legacy of the earthquake at L'Aquila, a town at risk of becoming overrun by mafia; on boxing as an escape route; on the life of the legendary South African jazz singer, Miriam Makeba; on an encounter with Salman Rushdie, and a tribute to Frank Miller, author of the graphic novel 300; on Michael Herr's Dispatches. One essay reflects on the aftermath of the publication of his book and subsequent film, Gomorrah, and how his life has been conditioned by the mafia's death threats, and the final essay in the collection celebrates the life of the Russian journalist Anna Politkovskaya.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.