R. Langlands shows, in analogy with Artin's original treatment of one-dimensional p, that at least for tetrahedral p, L(s, p) is equal to the L-function L(s, π) attached to a cuspdidal automorphic representation of the group GL(2, /A), /A being the adéle ring of the field, and L(s, π), whose definition is ultimately due to Hecke, is known to be entire. The main result, from which the existence of π follows, is that it is always possible to transfer automorphic representations of GL(2) over one number field to representations over a cyclic extension of the field. The tools he employs here are the trace formula and harmonic analysis on the group GL(2) over a local field.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.