This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.
This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
What's in this book This book contains an accelerated introduction to Maple, a computer alge bra language. It is intended for scientific programmers who have experience with other computer languages such as C, FORTRAN, or Pascal. If you wish a longer and more leisurely introduction to Maple, see (8, 27, 39). This book is also intended as a reference summary for people who use Maple infrequently enough so that they forget key commands. Chapter 4 is a keyword summary. This will be useful if you have forgotten the exact Maple command for what you want. This chapter is best accessed through the table of contents, since it is organized by subject matter. The mathematical prerequisites are calculus, linear algebra, and some differential equations. A course in numerical analysis will also help. Any extra mathematics needed will be developed in the book. This book was prepared using Maple V Release 3, although most of the examples will work with, at most, only slight modification in Maple V Release 2. This book does not require any particular hardware. The systems I have used in developing the book are machines running IBM DOS and WIN/OS2, Unix machines in an ASCII terminal mode, and x windows systems. There should be no adjustments necessary for readers equipped with Macintoshes or other hardware. Maple is an evolving system. New features will be described in the documentation for updates (?updates in Maple).
In order to emphasize the relationships and cohesion between analytical and numerical techniques, Ordinary Differential Equations in Theory and Practice presents a comprehensive and integrated treatment of both aspects in combination with the modeling of relevant problem classes. This text is uniquely geared to provide enough insight into qualitative aspects of ordinary differential equations (ODEs) to offer a thorough account of quantitative methods for approximating solutions numerically, and to acquaint the reader with mathematical modeling, where such ODEs often play a significant role. Although originally published in 1995, the text remains timely and useful to a wide audience. It provides a thorough introduction to ODEs, since it treats not only standard aspects such as existence, uniqueness, stability, one-step methods, multistep methods, and singular perturbations, but also chaotic systems, differential-algebraic systems, and boundary value problems. The authors aim to show the use of ODEs in real life problems, so there is an extended chapter in which illustrative examples from various fields are presented. A chapter on classical mechanics makes the book self-contained. Audience: the book is intended for use as a textbook for both undergraduate and graduate courses, and it can also serve as a reference for students and researchers alike.
ECMI has a brand name in Industrial Mathematics and organises successful biannual conferences. This time, the conference on Industrial Mathematics held in Eindhoven in June 2004 Mathematics focused on Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materials, Geophysics, Financial Mathematics and Water flow. The majority of the invited talks on these topics can be found in these proceedings. Apart from these lectures, a large number of contributed papers and minisymposium papers are included here. They give an interesting (and impressive) overview of the important place mathematics has achieved in solving all kinds of problems met in industry, and commerce in particular.
This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
ECMI has a brand name in Industrial Mathematics and organises successful biannual conferences. This time, the conference on Industrial Mathematics held in Eindhoven in June 2004 Mathematics focused on Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materials, Geophysics, Financial Mathematics and Water flow. The majority of the invited talks on these topics can be found in these proceedings. Apart from these lectures, a large number of contributed papers and minisymposium papers are included here. They give an interesting (and impressive) overview of the important place mathematics has achieved in solving all kinds of problems met in industry, and commerce in particular.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.