This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
The second of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Among the subjects of Part 2 are gauge theory, symplectic geometry, complex ge
This book contains contributions by an impressive list of leading mathematicians. The articles include high-level survey and research papers exploring contemporary issues in geometric analysis, differential geometry, and several complex variables. Many of the articles will provide graduate students with a good entry point into important areas of modern research. The material is intended for researchers and graduate students interested in several complex variables and complex geometry.
This text explains nontrivial applications of metric space topology to analysis. Covers metric space, point-set topology, and algebraic topology. Includes exercises, selected answers, and 51 illustrations. 1983 edition.
The third of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 3 begins with an overview by R.E. Greene of some recent trends in Riemannia
The second of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Among the subjects of Part 2 are gauge theory, symplectic geometry, complex ge
This volume is the outgrowth of a Special Session on Geometry, held at the November 1987 meeting of the AMS at the University of California at Los Angeles. The unusually well-attended session attracted more than sixty participants and featured over forty addresses by some of the day's outstanding geometers. By common consent, it was decided that the papers to be collected in the present volume should be surveys of relatively broad areas of geometry, rather than detailed presentations of new research results. A comprehensive survey of the field is beyond the scope of a volume such as this. Nonetheless, the editors have sought to provide all geometers, whatever their specialties, with some insight into recent developments in a variety of topics in this active area of research.
The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem
This volume is the outgrowth of a Special Session on Geometry, held at the November 1987 meeting of the AMS at the University of California at Los Angeles. The unusually well-attended session attracted more than sixty participants and featured over forty addresses by some of the day's outstanding geometers. By common consent, it was decided that the papers to be collected in the present volume should be surveys of relatively broad areas of geometry, rather than detailed presentations of new research results. A comprehensive survey of the field is beyond the scope of a volume such as this. Nonetheless, the editors have sought to provide all geometers, whatever their specialties, with some insight into recent developments in a variety of topics in this active area of research.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.