1. Introduction to complex and econophysics systems : a navigation map / T. Aste and T. Di Matteo -- 2. An introduction to fractional diffusion / B. I. Henry, T.A.M. Langlands and P. Straka -- 3. Space plasmas and fusion plasmas as complex systems / R. O. Dendy -- 4. Bayesian data analysis / M. S. Wheatland -- 5. Inverse problems and complexity in earth system science / I. G. Enting -- 6. Applied fluid chaos : designing advection with periodically reoriented flows for micro to geophysical mixing and transport enhancement / G. Metcalfe -- 7. Approaches to modelling the dynamical activity of brain function based on the electroencephalogram / D. T. J. Liley and F. Frascoli -- 8. Jaynes' maximum entropy principle, Riemannian metrics and generalised least action bound / R. K. Niven and B. Andresen -- 9. Complexity, post-genomic biology and gene expression programs / R. B. H. Williams and O. J.-H. Luo -- 10. Tutorials on agent-based modelling with NetLogo and network analysis with Pajek / M. J. Berryman and S. D. Angus.
An expanded chapter explores atmospheric chemistry and changing climate, with the most up-to-date statistics on CO2, the carbon cycle, other greenhouse gases, and the ozone hole.
Over the last decade, the study of cycles as a model for the earth's changing climate has become a new science. Earth Systems Science is the basis for understanding all aspects of anthropogenic global change, such as chemically forced global climate change. The work is aimed at those students interested in the emerging scientific discipline.Earth Systems Science is an integrated discipline that has been rapidly developing over the last two decades. New information is included in this updated edition so that the text remains relevant. This volume contains five new chapters, but of special importance is the inclusion of an expanded set of student exercises.The two senior authors are leading scientists in their fields and have been awarded numerous prizes for their research efforts.* First edition was widely adopted* Authors are highly respected in their field* Global climate change, integral to the book, is now one of the most important issues in atmospheric sciences and oceanography
After middling pharmaceutical company executive Clyde Young boards an airplane to attend a national meeting to make a presentation concerning his employers premium drug, his schedule is thrown into a curve when terrorists hijack the plane. After refusing to keep his head down, he is hurled out with a parachute that barely functions. He is able to survive in the wilderness, but upon his arrival back to civilization, no one believes his story. They assume he is one of the terrorists that hijacked the airplane, so Young escapes to Las Vegas to determine why he was targeted and who was responsible for his ordeal. He lives as a street person and meets four people who believe his story: a sociopath, a prostitute, an alcoholic doctor and a pickpocket. These people become his allies. They travel with him to the east coast and then to Europe. As Young continues his investigation, he discovers abuses on the part of his employer that could result in mortal danger for innumerable innocent patients. He must act quickly to expose the danger by staying one step ahead of the unknown criminals who are closing in on him and his allies.
Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences.Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied.Key Highlights of This TextProvides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanicsDescribes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclonesPresents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understandingSummarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depthIntegrates the latest field observations, numerical model simulations, and theorySupplies a theoretical treatment suitable for the advanced undergraduate or graduate level
All life is chemical. That fact underpins the developing field of ecological stoichiometry, the study of the balance of chemical elements in ecological interactions. This long-awaited book brings this field into its own as a unifying force in ecology and evolution. Synthesizing a wide range of knowledge, Robert Sterner and Jim Elser show how an understanding of the biochemical deployment of elements in organisms from microbes to metazoa provides the key to making sense of both aquatic and terrestrial ecosystems. After summarizing the chemistry of elements and their relative abundance in Earth's environment, the authors proceed along a line of increasing complexity and scale from molecules to cells, individuals, populations, communities, and ecosystems. The book examines fundamental chemical constraints on ecological phenomena such as competition, herbivory, symbiosis, energy flow in food webs, and organic matter sequestration. In accessible prose and with clear mathematical models, the authors show how ecological stoichiometry can illuminate diverse fields of study, from metabolism to global change. Set to be a classic in the field, Ecological Stoichiometry is an indispensable resource for researchers, instructors, and students of ecology, evolution, physiology, and biogeochemistry. From the foreword by Peter Vitousek: ? "[T]his book represents a significant milestone in the history of ecology. . . . Love it or argue with it--and I do both--most ecologists will be influenced by the framework developed in this book. . . . There are points to question here, and many more to test . . . And if we are both lucky and good, this questioning and testing will advance our field beyond the level achieved in this book. I can't wait to get on with it.
Drawing on both economics and ecology, this book offers telling insights into the confusing "jobs versus environment" debates as well as charts a recommended path towards a more co-habitable relationship. Avoiding the extreme views that economic growth will either destroy or save our natural environment, this book takes a more discriminating stance and illuminates why our nation’s natural environment is both better and worse than forty years ago.
This book analyzes the history and development of settlements—from the earliest periods in human history to the present day—from a Darwinian evolutionary perspective. At the foundation of the evolutionary model is the argument that the human capacity for complex communication and unique problem-solving ability have led to the formation and reality of the modern city and its scaled-up megacity status. While evolutionary theory forms the platform for the book’s argument, general systems theory provides the operational framework for the organization and interpretations of each chapter. Throughout the book, the authors tackle various issues, questions, and possibilities regarding the future development and evolution of human settlements.
Soil Genesis and Classification, Sixth Edition, builds on the success of the previous editions to present an unparalleled resource on soil formation and classification. Featuring a color plate section containing multiple soil profiles, this text also includes information on new classification systems and emerging technologies and databases with updated references throughout. Covering the diverse needs of both the academic and professional communities, this classic text will be a must have reference for all those in soil science and related fields.
A central goal of transportation is the delivery of safe and efficient services with minimal environmental impact. In practice, though, human mobility has flourished while nature has suffered. Awareness of the environmental impacts of roads is increasing, yet information remains scarce for those interested in studying, understanding, or minimizing the ecological effects of roads and vehicles. Road Ecology addresses that shortcoming by elevating previously localized and fragmented knowledge into a broad and inclusive framework for understanding and developing solutions. The book brings together fourteen leading ecologists and transportation experts to articulate state-of-the-science road ecology principles, and presents specific examples that demonstrate the application of those principles. Diverse theories, concepts, and models in the new field of road ecology are integrated to establish a coherent framework for transportation policy, planning, and projects. Topics examined include: foundations of road ecology roads, vehicles, and transportation planning vegetation and roadsides wildlife populations and mitigation water, sediment, and chemical flows aquatic ecosystems wind, noise, and atmospheric effects road networks and landscape fragmentation Road Ecology links ecological theories and concepts with transportation planning, engineering, and travel behavior. With more than 100 illustrations and examples from around the world, it is an indispensable and pioneering work for anyone involved with transportation, including practitioners and planners in state and province transportation departments, federal agencies, and nongovernmental organizations. The book also opens up an important new research frontier for ecologists.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.