Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
The central theme of this lecture collection is quantum dynamics, regarded mostly as the dynamics of entanglement and that of decoherence phenomena. Both these concepts appear to refer to the behavior of surprisingly fragile features of quantum systems supposed to model quantum memories and to implement quantum date processing routines. This collection may serve as an essential resource for those interested in both theoretical description and practical applications of fundamentals of quantum mechanics.
The book surveys mathematical relations between classical and quantum mechanics, gravity, time and thermodynamics from various points of view and many sources (with appropriate attribution). The emergence theme is developed with an emphasis on the meaning via mathematics. A background theme of Bohemian mechanics and connections to the quantum equivalence principle of Matone et al. is also developed in great detail. Some original work relating the quantum potential and Ricci flow is also included.
Reinvigorated by advances and insights the quantum theory of irreversible processes has recently attracted growing attention. This volume introduces the very basic concepts of semigroup dynamics of open quantum systems and reviews a variety of modern applications. Originally published as Volume 286 (1987) in Lecture in Physics, this volume has been newly typeset, revised and corrected and also expanded to include a review on recent developments.
The present book provides a unified and general framework for studying quantum and classical dynamical systems, both finite and infinite, conservative and dissipative. Special attention is paid to the use of statistical and geometrical techniques, such as multitime correlation functions,quantum dynamical entropy, and non-commutative Lyapunov exponents, for systems with a complex evolution. The material is presented in a concise but self-contained and mathematically friendly way. The main ideas are introduced and illustrated by numerous examples which are directly connected to therelevant physics. Suggestions for further reading are included at the end of each chapter. The book addresses graduate students both in physics and mathematics with interests in mathematical aspects of quantum physics and applications of ergodic theory, operator algebras and statistics to physics,but without any prior knowledge of these subjects.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.