In August of 1986, a special conference on recreational mathematics was held at the University of Calgary to celebrate the founding of the Strens Collection. Leading practitioners of recreational mathematics from around the world gathered in Calgary to share with each other the joy and spirit of play that is to be found in recreational mathematics. It would be difficult to find a better collection of wonderful articles on recreational mathematics by a more distinguished group of authors. If you are interested in tessellations, Escher, tilings, Rubik's cube, pentominoes, games, puzzles, the arbelos, Henry Dudeney, or change ringing, then this book is for you.
Mathematicians and non-mathematicians alike have long been fascinated by geometrical problems, particularly those that are intuitive in the sense of being easy to state, perhaps with the aid of a simple diagram. Each section in the book describes a problem or a group of related problems. Usually the problems are capable of generalization of variation in many directions. The book can be appreciated at many levels and is intended for everyone from amateurs to research mathematicians.
This classic on games and how to play them intelligently is being re-issued in a new, four volume edition. This book has laid the foundation to a mathematical approach to playing games. The wise authors wield witty words, which wangle wonderfully winning ways. In Volume 1, the authors do the Spade Work, presenting theories and techniques to "dissect" games of varied structures and formats in order to develop winning strategies.
Combinatorics, or the art and science of counting, is a vibrant and active area of pure mathematical research with many applications. The Unity of Combinatorics succeeds in showing that the many facets of combinatorics are not merely isolated instances of clever tricks but that they have numerous connections and threads weaving them together to form a beautifully patterned tapestry of ideas. Topics include combinatorial designs, combinatorial games, matroids, difference sets, Fibonacci numbers, finite geometries, Pascal's triangle, Penrose tilings, error-correcting codes, and many others. Anyone with an interest in mathematics, professional or recreational, will be sure to find this book both enlightening and enjoyable. Few mathematicians have been as active in this area as Richard Guy, now in his eighth decade of mathematical productivity. Guy is the author of over 300 papers and twelve books in geometry, number theory, graph theory, and combinatorics. In addition to being a life-long number-theorist and combinatorialist, Guy's co-author, Ezra Brown, is a multi-award-winning expository writer. Together, Guy and Brown have produced a book that, in the spirit of the founding words of the Carus book series, is accessible “not only to mathematicians but to scientific workers and others with a modest mathematical background.”
Based on lectures presented at the AMS Short Course on Combinatorial Games, held at the Joint Mathematics Meetings in Columbus in August 1990, the ten papers in this volume will provide readers with insight into this exciting field. Because the book requires very little background, it will likely find a wide audience that includes the amateur interested in playing games, the undergraduate looking for a new area of study, instructors seeking a refreshing area in which to give new courses at both the undergraduate and graduate levels, and graduate students looking for a variety of research topics.
In the quarter of a century since three mathematicians and game theorists collaborated to create Winning Ways for Your Mathematical Plays, the book has become the definitive work on the subject of mathematical games. Now carefully revised and broken down into four volumes to accommodate new developments, the Second Edition retains the original's wealth of wit and wisdom. The authors' insightful strategies, blended with their witty and irreverent style, make reading a profitable pleasure. In Volume 3, the authors examine Games played in Clubs, giving case studies for coin and paper-and-pencil games, such as Dots-and-Boxes and Nimstring. From the Table of Contents: - Turn and Turn About - Chips and Strips - Dots-and-Boxes - Spots and Sprouts - The Emperor and His Money - The King and the Consumer - Fox and Geese; Hare and Hounds - Lines and Squares
...the great feature of the book is that anyone can read it without excessive head scratching...You'll find plenty here to keep you occupied, amused, and informed. Buy, dip in, wallow." -IAN STEWART, NEW SCIENTIST "...a delightful look at numbers and their roles in everything from language to flowers to the imagination." -SCIENCE NEWS "...a fun and fascinating tour of numerical topics and concepts. It will have readers contemplating ideas they might never have thought were understandable or even possible." -WISCONSIN BOOKWATCH "This popularization of number theory looks like another classic." -LIBRARY JOURNAL
Lessons in Play is the authoritative book on combinatorial game theory. As the perfect complement to Winning Ways, it is a formal, yet playful introduction to the subject and covers all the core concepts needed to understand and play combinatorial games. Topics covered include symmetry and strategy stealing, the algebra of games, impartial, hot, and all-small games, and the partial order of games.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.