This book provides a comprehensive introduction to Finsler geometry in the language of present-day mathematics. Through Finsler geometry, it also introduces the reader to other structures and techniques of differential geometry.Prerequisites for reading the book are minimal: undergraduate linear algebra (over the reals) and analysis. The necessary concepts and tools of advanced linear algebra (over modules), point set topology, multivariable calculus and the rudiments of the theory of differential equations are integrated in the text. Basic manifold and bundle theories are treated concisely, carefully and (apart from proofs) in a self-contained manner.The backbone of the book is the detailed and original exposition of tangent bundle geometry, Ehresmann connections and sprays. It turns out that these structures are important not only in their own right and in the foundation of Finsler geometry, but they can be also regarded as the cornerstones of the huge edifice of Differential Geometry.The authors emphasize the conceptual aspects, but carefully elaborate calculative aspects as well (tensor derivations, graded derivations and covariant derivatives). Although they give preference to index-free methods, they also apply the techniques of traditional tensor calculus.Most proofs are elaborated in detail, which makes the book suitable for self-study. Nevertheless, the authors provide for more advanced readers as well by supplying them with adequate material, and the book may also serve as a reference.
Since the mid-1980s increasing effort has been put into light exotic nuclei, that is light nuclei of unusual composition. The research of the exotic nuclei began with the advent of accelerated beams of such nuclei. This new technique has revitalized nuclear physics, and the facilities producing radioactive ion beams now offer opportunities for pion
This book provides a comprehensive introduction to Finsler geometry in the language of present-day mathematics. Through Finsler geometry, it also introduces the reader to other structures and techniques of differential geometry.Prerequisites for reading the book are minimal: undergraduate linear algebra (over the reals) and analysis. The necessary concepts and tools of advanced linear algebra (over modules), point set topology, multivariable calculus and the rudiments of the theory of differential equations are integrated in the text. Basic manifold and bundle theories are treated concisely, carefully and (apart from proofs) in a self-contained manner.The backbone of the book is the detailed and original exposition of tangent bundle geometry, Ehresmann connections and sprays. It turns out that these structures are important not only in their own right and in the foundation of Finsler geometry, but they can be also regarded as the cornerstones of the huge edifice of Differential Geometry.The authors emphasize the conceptual aspects, but carefully elaborate calculative aspects as well (tensor derivations, graded derivations and covariant derivatives). Although they give preference to index-free methods, they also apply the techniques of traditional tensor calculus.Most proofs are elaborated in detail, which makes the book suitable for self-study. Nevertheless, the authors provide for more advanced readers as well by supplying them with adequate material, and the book may also serve as a reference.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.