Biology and engineering meet in this groundbreaking and growing discipline Biomedical engineering is an established interdisciplinary research and training area, combining various aspects of physiology, biology, materials science and engineering. Biomedical engineering programs and courses are integral parts of pertinent curricula, generating an urgent need for textbooks which can introduce this fundamental subject to new generations of students, researchers and practicing professionals. The textbook Concepts of Tissue-Biomaterial Interactions meets this need with an introduction to the subject. Beginning with various, key, fundamental concepts of cellular biology and the physiology of tissue wound healing (required to understand interactions of tissues and implants) it offers essential information and insight regarding the design of successful biomaterial implants. Concluding with a look at the current forefront and future of the field, it is an indispensable introduction for fundamental and cutting-edge aspects of biomedical engineering applications. Concepts of Tissue-Biomaterial Interactions readers will also find: Introduction to biological aspects such as cell-extracellular matrix interactions and cell-substrate interactions Details regarding various aspects of the process of normal tissue wound healing Current knowledge of tissue wound healing in the presence of implants Examples of pathological complications, including infection Design criteria for biocompatible implants The process of obtaining regulatory approval of new biomaterials and implantable medical devices by pertinent regulatory agencies Implant biomaterial and medical devices: past, present, and future Concepts of Tissue-Biomaterial Interactions is recommended for advanced undergraduate and for graduate students interested in biomedical engineering, biomaterials, tissue engineering, and implantable biomaterials/medical devices, as well as a reference for practicing biomedical engineering professionals.
An Introduction to Tissue-Biomaterial Interactions acquaints an undergraduate audience with the fundamental biological processes that influence these sophisticated, cutting-edge procedures. Chapters one through three provide more detail about the molecular-level events that happen at the tissue-implant interface, while chapters four through ten explore selected material, biological, and physiological consequences of these events. The importance of the body’s wound-healing response is emphasized throughout. Specific topics covered include:Structure and properties of biomaterials Proteins Protein-surface interactions Blood-biomaterial interactions Inflammation and infection The immune system Biomaterial responses to implantation Biomaterial surface engineering Intimal hyperplasia and osseointegration as examples of tissue-biomaterial interactions The text also provides extensive coverage of the three pertinent interfaces between the body and the biomaterial, between the body and the living cells, and between the cells and the biomaterial that are critical in the development of tissue-engineered products that incorporate living cells within a biomaterial matrix. Ideal for a one-semester, biomedical engineering course, An Introduction to Tissue-Biomaterial Interactions provides a solid framework for understanding today’s and tomorrow’s implantable biomedical devices.
An Introduction to Tissue-Biomaterial Interactions acquaints an undergraduate audience with the fundamental biological processes that influence these sophisticated, cutting-edge procedures. Chapters one through three provide more detail about the molecular-level events that happen at the tissue-implant interface, while chapters four through ten explore selected material, biological, and physiological consequences of these events. The importance of the body’s wound-healing response is emphasized throughout. Specific topics covered include:Structure and properties of biomaterials Proteins Protein-surface interactions Blood-biomaterial interactions Inflammation and infection The immune system Biomaterial responses to implantation Biomaterial surface engineering Intimal hyperplasia and osseointegration as examples of tissue-biomaterial interactions The text also provides extensive coverage of the three pertinent interfaces between the body and the biomaterial, between the body and the living cells, and between the cells and the biomaterial that are critical in the development of tissue-engineered products that incorporate living cells within a biomaterial matrix. Ideal for a one-semester, biomedical engineering course, An Introduction to Tissue-Biomaterial Interactions provides a solid framework for understanding today’s and tomorrow’s implantable biomedical devices.
Biology and engineering meet in this groundbreaking and growing discipline Biomedical engineering is an established interdisciplinary research and training area, combining various aspects of physiology, biology, materials science and engineering. Biomedical engineering programs and courses are integral parts of pertinent curricula, generating an urgent need for textbooks which can introduce this fundamental subject to new generations of students, researchers and practicing professionals. The textbook Concepts of Tissue-Biomaterial Interactions meets this need with an introduction to the subject. Beginning with various, key, fundamental concepts of cellular biology and the physiology of tissue wound healing (required to understand interactions of tissues and implants) it offers essential information and insight regarding the design of successful biomaterial implants. Concluding with a look at the current forefront and future of the field, it is an indispensable introduction for fundamental and cutting-edge aspects of biomedical engineering applications. Concepts of Tissue-Biomaterial Interactions readers will also find: Introduction to biological aspects such as cell-extracellular matrix interactions and cell-substrate interactions Details regarding various aspects of the process of normal tissue wound healing Current knowledge of tissue wound healing in the presence of implants Examples of pathological complications, including infection Design criteria for biocompatible implants The process of obtaining regulatory approval of new biomaterials and implantable medical devices by pertinent regulatory agencies Implant biomaterial and medical devices: past, present, and future Concepts of Tissue-Biomaterial Interactions is recommended for advanced undergraduate and for graduate students interested in biomedical engineering, biomaterials, tissue engineering, and implantable biomaterials/medical devices, as well as a reference for practicing biomedical engineering professionals.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.