This volume presents proceedings from the AMS short course, Trends in Optimization 2004, held at the Joint Mathematics Meetings in Phoenix (AZ). It focuses on seven exciting areas of discrete optimization. In particular, Karen Aardal describes Lovasz's fundamental algorithm for producing a short vector in a lattice by basis reduction and H.W. Lenstra's use of this idea in the early 1980s in his polynomial-time algorithm for integer programming in fixed dimension. Aardal's article, lucid presentations of the material. It also contains practical developments using computational tools. Bernd Sturmfels' article, Algebraic recipes for integer programming, discusses how methods of commutative algebra and algebraic combinatorics can be used successfully to attack integer programming problems. Specifically, Grobner bases play a central role in algorithmic theory and practice. Moreover, it is shown that techniques based on short rational functions are bringing new insights, such as in computing the integer programming gap. Overall, these articles, together with five other contributions, make this volume an impressive compilation on the state-of-the-art of optimization. It is suitable for graduate students and researchers interested in discrete optimization.
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the statepolytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Grobner bases of toric ideals and other methods fromcommutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.