Quantum computers are the proposed centerpieces of a revolutionary, 21st-century quantum information technology. This book takes the reader into the world of quantum mechanics and continues on an in-depth study of quantum information and quantum computing, including the future of quantum technology. This text focuses on what is "quantum" about quantum mechanics; topics discussed include the EPR paradox, entanglement, teleportation, Bell's Theorem, quantum computing, and code-breaking with quantum computers.--Back cover.
Quantum computers are the proposed centerpieces of a revolutionary, 21st-century quantum information technology. This book takes the reader into the world of quantum mechanics and continues on an in-depth study of quantum information and quantum computing, including the future of quantum technology. This text focuses on what is "quantum" about quantum mechanics; topics discussed include the EPR paradox, entanglement, teleportation, Bell's Theorem, quantum computing, and code-breaking with quantum computers.--Back cover.
Quantum computers are the proposed centerpieces of a revolutionary, 21st century quantum information technology. Ideal for undergraduate and graduate courses in modern quantum physics, Foundations of Quantum Mechanics: From Photons to Quantum Computers takes the reader into the fascinating world of quantum mechanics and continues on an in-depth study of quantum information and quantum computing, including an entire chapter on the future of quantum technology. This accessible text with modern applications focuses on what is “quantum” about quantum mechanics; topics discussed include the EPR paradox, entanglement, teleportation, Bell’s Theorem, quantum computing, and code-breaking with quantum computers.
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.