Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
This book systematically establishes the almost periodic theory of dynamic equations and presents applications on time scales in fuzzy mathematics and uncertainty theory. The authors introduce a new division of fuzzy vectors depending on a determinant algorithm and develop a theory of almost periodic fuzzy multidimensional dynamic systems on time scales. Several applications are studied; in particular, a new type of fuzzy dynamic systems called fuzzy q-dynamic systems (i.e. fuzzy quantum dynamic systems) is presented. The results are not only effective on classical fuzzy dynamic systems, including their continuous and discrete situations, but are also valid for other fuzzy multidimensional dynamic systems on various hybrid domains. In an effort to achieve more accurate analysis in real world applications, the authors propose a number of uncertain factors in the theory. As such, fuzzy dynamical models, interval-valued functions, differential equations, fuzzy-valued differential equations, and their applications to dynamic equations on time scales are considered.
The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors’ knowledge this is the first book devoted to Hardy-typeinequalities and their extensions on time scales.
This book presents fixed point theory, one of the crucial tools in applied mathematics, functional analysis, and topology, which has been used to solve distinct real-world problems in computer science, engineering, and physics. The authors begin with an overview of the extension of metric spaces. Readers are introduced to general fixed-point theorems while comparing and contrasting important and insignificant metric spaces. The book is intended to be self-contained and serves as a unique resource for researchers in various disciplines.
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
The approximation of functions by linear positive operators is an important research topic in general mathematics and it also provides powerful tools to application areas such as computer-aided geometric design, numerical analysis, and solutions of differential equations. q-Calculus is a generalization of many subjects, such as hypergeometric series, complex analysis, and particle physics. This monograph is an introduction to combining approximation theory and q-Calculus with applications, by using well- known operators. The presentation is systematic and the authors include a brief summary of the notations and basic definitions of q-calculus before delving into more advanced material. The many applications of q-calculus in the theory of approximation, especially on various operators, which includes convergence of operators to functions in real and complex domain forms the gist of the book. This book is suitable for researchers and students in mathematics, physics and engineering, and for professionals who would enjoy exploring the host of mathematical techniques and ideas that are collected and discussed in the book.
World Scientific Series in Applicable Analysis (WSSIAA) reports new developments of a high mathematical standard and of current interest. Each volume in the series is devoted to mathematical analysis that has been applied, or is potentially applicable to the solution of scientific, engineering, and social problems. The third volume of WSSIAA contains 47 research articles on inequalities by leading mathematicians from all over the world and a tribute by R.M. Redheffer to Wolfgang Walter — to whom this volume is dedicated — on his 66th birthday.Contributors: A Acker, J D Aczél, A Alvino, K A Ames, Y Avishai, C Bandle, B M Brown, R C Brown, D Brydak, P S Bullen, K Deimling, J Diaz, Á Elbert, P W Eloe, L H Erbe, H Esser, M Essén, W D Evans, W N Everitt, V Ferone, A M Fink, R Ger, R Girgensohn, P Goetgheluck, W Haussmann, S Heikkilä, J Henderson, G Herzog, D B Hinton, T Horiuchi, S Hu, B Kawohl, V G Kirby; N Kirchhoff, G H Knightly, H W Knobloch, Q Kong, H König, A Kufner, M K Kwong, A Laforgia, V Lakshmikantham, S Leela, R Lemmert, E R Love, G Lüttgens, S Malek, R Manásevich, J Mawhin, R Medina, M Migda, R J Nessel, Z Páles, N S Papageorgiou, L E Payne, J Pe…ariƒ, L E Persson, A Peterson, M Pinto, M Plum, J Popenda, G Porru, R M Redheffer, A A Sagle, S Saitoh, D Sather, K Schmitt, D F Shea, A Simon, S Sivasundaram, R Sperb, C S Stanton, G Talenti, G Trombetti, S Varošanec, A S Vatsala, P Volkmann, H Wang, V Weckesser, F Zanolin, K Zeller, A Zettl.
This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.
This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as very recent results in that area. While there are several books on difference equations and also on oscillation theory for ordinary differential equations, there is until now no book devoted solely to oscillation theory for difference equations. This book is filling the gap, and it can easily be used as an encyclopedia and reference tool for discrete oscillation theory. In nine chapters, the book covers a wide range of subjects, including oscillation theory for second-order linear difference equations, systems of difference equations, half-linear difference equations, nonlinear difference equations, neutral difference equations, delay difference equations, and differential equations with piecewise constant arguments. This book summarizes almost 300 recent research papers and hence covers all aspects of discrete oscillation theory that have been discussed in recent journal articles. The presented theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that is devoted to notes and bibliographical and historical remarks. The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses in calculus.
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales. First proposed by S. Hilger, the time scale theory—a unified view of continuous and discrete analysis—has been widely used to study various classes of dynamic equations and models in real-world applications. Measure theory based on time scales, in its turn, is of great power in analyzing functions on time scales or hybrid domains. As a new and exciting type of mathematics—and more comprehensive and versatile than the traditional theories of differential and difference equations—, the time scale theory can precisely depict the continuous-discrete hybrid processes and is an optimal way forward for accurate mathematical modeling in applied sciences such as physics, chemical technology, population dynamics, biotechnology, and economics and social sciences. Graduate students and researchers specializing in general dynamic equations on time scales can benefit from this work, fostering interest and further research in the field. It can also serve as reference material for undergraduates interested in dynamic equations on time scales. Prerequisites include familiarity with functional analysis, measure theory, and ordinary differential equations.
This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms, in particular the ones that satisfy the A-harmonic equations. The presentation focuses on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are discussed next. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous presentation requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel-Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone-spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. The book should be useful for mathematicians, numerical analysts, computer scientists and engineers.
Interest in the mathematical analysis of multi-functions has increased rapidly over the past thirty years, partly because of its applications in fields such as biology, control theory and optimization, economics, game theory, and physics. Set Valued Mappings with Applications to Nonlinear Analysis contains 29 research articles from leading mathematicians in this area. The contributors were invited to submit papers on topics such as integral inclusion, ordinary and partial differential inclusions, fixed point theorems, boundary value problems, and optimal control. This collection will be of interest to researchers in analysis and will pave the way for the creation of new mathematics in the future.
This work introduces readers to the topic of maximal regularity for difference equations. The authors systematically present the method of maximal regularity, outlining basic linear difference equations along with relevant results. They address recent advances in the field, as well as basic semi group and cosine operator theories in the discrete setting. The authors also identify some open problems that readers may wish to take up for further research. This book is intended for graduate students and researchers in the area of difference equations, particularly those with advance knowledge of and interest in functional analysis.
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
This monograph aims to fill a void by making available a source book which first systematically describes all the available uniqueness and nonuniqueness criteria for ordinary differential equations, and compares and contrasts the merits of these criteria, and second, discusses open problems and offers some directions towards possible solutions.
This book provides an extensive survey on Lyapunov-type inequalities. It summarizes and puts order into a vast literature available on the subject, and sketches recent developments in this topic. In an elegant and didactic way, this work presents the concepts underlying Lyapunov-type inequalities, covering how they developed and what kind of problems they address. This survey starts by introducing basic applications of Lyapunov’s inequalities. It then advances towards even-order, odd-order, and higher-order boundary value problems; Lyapunov and Hartman-type inequalities; systems of linear, nonlinear, and quasi-linear differential equations; recent developments in Lyapunov-type inequalities; partial differential equations; linear difference equations; and Lyapunov-type inequalities for linear, half-linear, and nonlinear dynamic equations on time scales, as well as linear Hamiltonian dynamic systems. Senior undergraduate students and graduate students of mathematics, engineering, and science will benefit most from this book, as well as researchers in the areas of ordinary differential equations, partial differential equations, difference equations, and dynamic equations. Some background in calculus, ordinary and partial differential equations, and difference equations is recommended for full enjoyment of the content.
World Scientific Series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. This volume contains 30 research articles on the theory of optimization and its applications by the leading scientists in the field. It is hoped that the material in the present volume will open new vistas in research.Contributors: B D O Anderson, M Bertaja, O J Boxma, O Burdakov, A Cantoni, D J Clements, B D Craven, J B Cruz, Jr., P Diamond, S V Drakunov, Y G Evtushenko, N M Filatov, I Galligani, J C Geromel, F Giannessi, M J Grimble, G O Guardabassi, D-W Gu, C H Houpis, D G Hull, C Itiki, X Jian, M A Johnson, R E Kalaba, J C Kalkkuhl, M R Katebi, T J Kim, P Kloeden, T Kobylarz, A J Laub, C S Lee, G Leitmann, B-G Liu, J Liu, Z-Q Luo, K A Lurie, P Maponi, J B Matson, A Mess, G Pacelli, M Pachter, I Postlethwaite, T Rapcsak, M C Recchioni, Y Sakawa, S V Savastyuk, K Schittkowski, Y Shi, M A Sikora, D D Siljak, K L Teo, C Tovey, P Tseng, F E Udwadia, H Unbehauen, A Vladimirov, B Vo, J F Whidborne, R Xu, P L Yu, V G Zhadan, F Zirilli.
Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an "answers and hints" section, are included. The book further provides a background and history of the subject.
This textbook, now in its second edition, results from lectures, practical problems, and workshops on Optimal Control, given by the authors at Irkutsk State University, Far Eastern Federal University (both in Vladivostok, Russia), and Kwangwoon University (Seoul, South Korea). In this work, the authors cover the theory of linear and nonlinear systems, touching on the basic problem of establishing the necessary and sufficient conditions of optimal processes. Readers will find two new chapters, with results of potential interest to researchers with a focus on the theory of optimal control, as well as to those interested in applications in Engineering and related sciences. In addition, several improvements have been made through the text. This book is structured in three parts. Part I starts with a gentle introduction to the basic concepts in Optimal Control. In Part II, the theory of linear control systems is constructed on the basis of the separation theorem and the concept of a reachability set. The authors prove the closure of reachability set in the class of piecewise continuous controls and touch on the problems of controllability, observability, identification, performance, and terminal control. Part III, in its turn, is devoted to nonlinear control systems. Using the method of variations and the Lagrange multipliers rule of nonlinear problems, the authors prove the Pontryagin maximum principle for problems with mobile ends of trajectories. Problem sets at the end of chapters and a list of additional tasks, provided in the appendix, are offered for students seeking to master the subject. The exercises have been chosen not only as a way to assimilate the theory but also as to induct the application of such knowledge in more advanced problems.
In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.
This one-of-a-kind guide gets endovascular and trauma specialists up to date on the rapidly evolving field of vascular injury management New technologies have created fresh opportunities to explore improved care options for patients with vascular injuries, and the discipline of vascular surgery is increasingly moving toward wider use of endovascular treatments. Edited by highly experienced, dual-trained trauma and vascular/endovascular surgeons, Vascular Injury: Endovascular and Open Management examines the process of medical, open, or endovascular management of contemporary vascular injury. Detailed description of endovascular technical elements help endovascular specialists adapt their traditional vascular surgery approaches to trauma; at the same time, the book familiarizes trauma specialists with an expanded technical skillset, as well as the strengths/limitations of technologies not provided elsewhere in traditional trauma training. Vascular Injury: Endovascular and Open Management covers: Vascular injury training, diagnosis, and management General open vascular repair for trauma Basics of endovascular trauma management Endovascular tools and techniques for trauma applications Cervical, upper extremity, and axillo-subclavian injuries Thoracic arch and proximal great vessels Abdominal aortic and Iliac artery injury General principles of post-operative management and surveillance Hybrid trauma care environments and vascular trauma teams, and more
Contents: Some ExamplesLinear ProblemsGreen's FunctionMethod of Complementary FunctionsMethod of AdjointsMethod of ChasingSecond Order EquationsError Estimates in Polynomial InterpolationExistence and UniquenessPicard's and Approximate Picard's MethodQuasilinearization and Approximate QuasilinearizationBest Possible Results: Weight Function TechniqueBest Possible Results: Shooting MethodsMonotone Convergence and Further ExistenceUniqueness Implies ExistenceCompactness Condition and Generalized SolutionsUniqueness Implies UniquenessBoundary Value FunctionsTopological MethodsBest Possible Results: Control Theory MethodsMatching MethodsMaximal SolutionsMaximum PrincipleInfinite Interval ProblemsEquations with Deviating Arguments Readership: Graduate students, numerical analysts as well as researchers who are studying open problems. Keywords:Boundary Value Problems;Ordinary Differential Equations;Green's Function;Quasilinearization;Shooting Methods;Maximal Solutions;Infinite Interval Problems
This book highlights an unprecedented number of real-life applications of differential equations together with the underlying theory and techniques. The problems and examples presented here touch on key topics in the discipline, including first order (linear and nonlinear) differential equations, second (and higher) order differential equations, first order differential systems, the Runge–Kutta method, and nonlinear boundary value problems. Applications include growth of bacterial colonies, commodity prices, suspension bridges, spreading rumors, modeling the shape of a tsunami, planetary motion, quantum mechanics, circulation of blood in blood vessels, price-demand-supply relations, predator-prey relations, and many more. Upper undergraduate and graduate students in Mathematics, Physics and Engineering will find this volume particularly useful, both for independent study and as supplementary reading. While many problems can be solved at the undergraduate level, a number of challenging real-life applications have also been included as a way to motivate further research in this vast and fascinating field.
This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.
This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.