This book presents a review of techniques based on waveguide systems, striplines, freespace systems and more, discussing the salient features of each method in detail. Since metamaterials are typically inhomogeneous and anisotropic, the experimental techniques for electromagnetic (EM) material characterization of metamaterial structures need to tackle several challenges. Furthermore, the modes supported by metamaterial structures are extremely sensitive to external perturbations. As such the measurement fixtures for EM material characterization have to be modified to account for such effects. The book provides a valuable resource for researchers working in the field of metamaterials
This SpringerBrief details various techniques employed for enhancing the transmission efficiency of radomes by modifying the radome wall configurations. These broadbanding techniques are based on inclusion of metallic wire-grids/meshes in the radomewalls, inclusion of metallic strip-gratings in the radome layers, inclusion of FSS based structures in between the radome layers and the use of inhomogeneous dielectric structures as radome wall. The volume provides detailed chapter-wise explanation of the design aspects and discusses the performance analysis of the modified radome wall configurations. It will be of interest to researchers, academicians and students working in the field of radomes.
Stealth technology is a crucial pre-requisite in the combat zone, where swiftness, surprise and initiative are the decisive elements for survivability. The supreme goal here is to reduce the visibility of military vehicles by shaping, application of radar absorbing materials, passive cancellation, active cancellation etc. With respect to multilayered radar absorbing structures (RAS), this book presents an efficient algorithm based on particle swarm optimization (PSO), for the material selection as well as optimization of thickness of multilayered RAS models considering both normal as well as oblique incidence cases. It includes a thorough overview of the theoretical background required for the analysis of multilayered RAS as well as the step-by-step procedure for the implementation of PSO-based algorithm. The accuracy and computational efficiency of the indigenously developed code is also clearly established using relevant validations and case studies. FEATURES Provides step-by-step procedure for the implementation of particle swarm optimization (PSO) based algorithm in the context of multilayered radar absorbing structures (RAS) design Helps to understand the EM design, analysis and optimization of multilayered RAS Describes the theoretical background required for the analysis of multilayered RAS Illustrates in detail the theoretical formulation supported by intuitive ray diagrams and comprehensive flowcharts to implement the algorithm with ease Includes elaborate validations and case studies This book will serve as a valuable resource for students, researchers, scientists, and engineers involved in the electromagnetic design and development of multi-layered radar absorbing structures.
This book presents a novel methodology for the computation of RCS of metallic structures using a parallelized version of NEC in conjunction with a finite element preprocessor which has been strategically incorporated for simplifying geometry modelling catering to NEC guidelines. It includes a thorough overview of the theoretical background of NEC including all relevant aspects of formulation and modelling. The revised methodology including all the required steps and details is discussed elaborately along with case studies and validations. This book will serve as a valuable resource for students, researchers, scientists, and engineers working in the field of RCS predictions and measurements.
This book reports on a new radome wall configuration based on an inhomogeneous planar layer, which overcomes current fabrication constraints in radome design and yields improved electromagnetic (EM) characteristics. The book also includes a detailed description of radomes and antenna-radome interaction studies for different radome wall configurations. The radome wall was designed using the equivalent transmission line method (EQTLM), since it requires less computational speed and provides accurate results. In order to substantiate the accuracy of the results obtained using EQTLM, the simulated results based on full wave methods like CST Microwave Studio Suite are also included. The EM performance analysis of the antenna-radome system for two radome shapes, tangent ogive (for airborne applications) and hemispherical (for ground-based applications), was performed using Geometric Optics Method in conjunction with the Aperture Integration Method. To show the efficacy of the new design, a comparison of performance characteristics between the novel radome and conventional wall configurations is also included. Lastly, it presents antenna-radome interaction studies for various aperture distributions. The book offers a unique resource for all researchers working in the area of microwave radomes.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.