This book is the second of a three-volume set of books on the theory of algebras, a study that provides a consistent framework for understanding algebraic systems, including groups, rings, modules, semigroups and lattices. Volume I, first published in the 1980s, built the foundations of the theory and is considered to be a classic in this field. The long-awaited volumes II and III are now available. Taken together, the three volumes provide a comprehensive picture of the state of art in general algebra today, and serve as a valuable resource for anyone working in the general theory of algebraic systems or in related fields. The two new volumes are arranged around six themes first introduced in Volume I. Volume II covers the Classification of Varieties, Equational Logic, and Rudiments of Model Theory, and Volume III covers Finite Algebras and their Clones, Abstract Clone Theory, and the Commutator. These topics are presented in six chapters with independent expositions, but are linked by themes and motifs that run through all three volumes.
A thorough treatment of free lattices, including such aspects as Whitman's solution to the word problem, bounded monomorphisms and related concepts, totally atomic elements, infinite intervals, computation, term rewrite systems, and varieties. Includes several results that are new or have not been previously published. Annotation copyright by Book News, Inc., Portland, OR
A variety (equational class) of lattices is said to be finitely based if there exists a finite set of identities defining the variety. Let [capital script]M [infinity symbol] [over][subscript italic]n denote the lattice variety generated by all modular lattices of width not exceeding [subscript italic]n. [capital script]M [infinity symbol] [over]1 and [capital script]M [infinity symbol] [over]2 are both the class of all distributive lattices and consequently finitely based. B. Jónsson has shown that [capital script]M [infinity symbol] [over]3 is also finitely based. On the other hand, K. Baker has shown that [capital script]M [infinity symbol] [over][subscript italic]n is not finitely based for 5 [less than or equal to symbol] [italic]n [less than] [lowercase Greek]Omega. This paper settles the finite bases problem for [capital script]M [infinity symbol] [over]4.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.