Over the last 100 years, the automobile has become integrated in a fundamental way into the broader economy. A broad and deep ecosystem has emerged, and critical components of this ecosystem include insurance, after-market services, automobile retail sales, automobile lending, energy suppliers (e.g., gas stations), medical services, advertising, lawyers, banking, public planners, and law enforcement. These components - which together represent almost $2 trillion of the U.S. economy - are in equilibrium based on the current capabilities of automotive technology. However, the advent of autonomous vehicles (AVs) and technologies like electrification have the potential to significantly disrupt the automotive ecosystem. The critical cog governing the rate and pace of this shift is the management of the test and verification of AVs. In this SAE EDGE™ report, six senior industry leaders in the impacted ecosystems essay articles which describe sectors of the current automotive ecosystem and the manner in which AV technology can potentially reshape them - providing a mosaic of the massive infrastructure shifts which will be required to absorb AV technologies. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019005
Automated driving system (ADS) technology and ADS-enabled/operated vehicles - commonly referred to as automated vehicles and autonomous vehicles (AVs) - have the potential to impact the world as significantly as the internal combustion engine. Successful ADS technologies could fundamentally transform the automotive industry, civil planning, the energy sector, and more. Rapid progress is being made in artificial intelligence (AI), which sits at the core of and forms the basis of ADS platforms. Consequently, autonomous capabilities such as those afforded by advanced driver assistance systems (ADAS) and other automation solutions are increasingly becoming available in the marketplace. To achieve highly or fully automated or autonomous capabilities, a major leap forward in the validation of these ADS technologies is required. Without this critical cog, helping to ensure the safety and reliability of these systems and platforms, the full capabilities of ADS technology will not be realized. This paper explores the ADS validation challenge by reviewing existing approaches and examining the effectiveness of those approaches, presenting critical techniques required to bring safe and effective solutions to market, discussing unsettled topics, and suggesting next steps for industry stakeholders to consider as they work to advance the ADS ecosystem. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019001
As automobiles morph from stand-alone mechanical objects to highly connected, autonomous systems with increasing amounts of electronic components. To manage these complex systems, some semblance of in-car decision-making is also being built and networked to a cloud architecture. This cloud can also enable even deeper capabilities within the broader automotive ecosystem. Unsettled Issues Regarding Autonomous Vehicles and Open-source Software introduces the impact of software in advanced automotive applications, the role of open-source communities in accelerating innovation, and the important topic of safety and cybersecurity. As electronic functionality is captured in software and a bigger percentage of that software is open-source code, some critical challenges arise concerning security and validation. https://doi.org/10.4271/EPR2021009
US transportation infrastructure is dominated by the automobile form factor. Alternative modalities of movement, such as bikes, golf carts, and other micromobility options, have existed but are decidedly at a lower tier of importance. Even pedestrian access ways are not overly emphasized in the US transportation system. This lack of prioritization matches the reality that the vast majority of people and commerce moves through the motor vehicle infrastructure, with micromobility sitting in the periphery. Additionally, given the current lack of commercial applications, there are limited direct fee-based funding mechanisms connected to micromobility form factors. Micromobility and the Next Infrastructure Wave discusses how recent technological innovations in electrification, e-commerce, and autonomy are enabling a new class of micromobility devices which offer palpable value to consumers and enable significant commercial applications. Unlike the past, these micromobility devices now have the scale, commercial funding, and operational economic value to justify a focused infrastructure effort. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024022
With billions of dollars of investment and events like DARPA’s Grand Challenges automated driving technology has been making its way toward commercialization. While the enabling technology for SAE Level 4 and 5 automated vehicles (AV) has not yet matured, specific restricted-use models such as “robo-taxis” and automated truck convoying show great promise. Now, cities are across the world are looking to AVs to solve their public transportation issues. With low speeds and fixed route, public transportation is an ideal application for AVs. From a business angle, AVs could leverage existing public transport models and infrastructure while providing superior quality of service for disadvantaged communities. Yet, dense urban environments—which would benefit from automated transportation the most—present unique challenges and public sector requirements. This SAE EDGE™ Research Report by Dr. Rahul Razdan examines the divergent applications and experiences of four urban cities as they engage with AV technology for their specific purposes: Jacksonville and Orlando, Florida; Tallinn; and Singapore. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020020
This report examines the current interaction points between humans and autonomous systems, with a particular focus on advanced driver assistance systems (ADAS), the requirements for human-machine interfaces as imposed by human perception, and finally, the progress being made to close the gap. Autonomous technology has the potential to benefit personal transportation, last-mile delivery, logistics, and many other mobility applications enormously. In many of these applications, the mobility infrastructure is a shared resource in which all the players must cooperate. In fact, the driving task has been described as a “tango” where we—as humans—cooperate naturally to enable a robust transportation system. Can autonomous systems participate in this tango? Does that even make sense? And if so, how do we make it happen? Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020025
With over 100 years of operation, the current automobile industry has settled into an equilibrium with the development of methodologies, regulations, and processes for improving safety. In addition, a nearly $2-trillion market operates in the automotive ecosystem with connections into fields ranging from insurance to advertising. Enabling this ecosystem is a well-honed, tiered supply chain and an established development environment. Autonomous vehicle (AV) technology is a leap forward for the existing automotive industry; now the automobile is expected to manage perception and decision-making tasks. The safety technologies associated with these tasks were presented in an earlier SAE EDGE™ Research Report, “Unsettled Technology Areas in Autonomous Vehicle Test and Validation.” In a later SAE EDGE™ Research Report, “Unsettled Topics Concerning Automated Driving Systems and the Transportation Ecosystem,” senior executives from the automotive ecosystem explored the impact of AV technology as they faced the prospect of this disruptive technology entering their marketplace. Interestingly, stable use-models and market penetration were all gated primarily by the demonstration of AV safety. Building on these previous verification and validation (V&V)-related reports, “Unsettled Topics Concerning Automated Driving Systems and the Development Ecosystem” explores the open issues in the shift of the development and supplier environment toward a new AV-enabled future. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020004
Rahul Pandita was fourteen years old when he was forced to leave his home in Srinagar along with his family. They were Kashmiri Pandits-the Hindu minority within a Muslim-majority Kashmir that was by 1990 becoming increasingly agitated with the cries of 'Azaadi' from India. Our Moon Has Blood Clots is the story of Kashmir, in which hundreds of thousands of Pandits were tortured, killed and forced to leave their homes by Islamist militants, and forced to spend the rest of their lives in exile in their own country. Pandita has written a deeply personal, powerful and unforgettable story of history, home and loss.
US transportation infrastructure is dominated by the automobile form factor. Alternative modalities of movement, such as bikes, golf carts, and other micromobility options, have existed but are decidedly at a lower tier of importance. Even pedestrian access ways are not overly emphasized in the US transportation system. This lack of prioritization matches the reality that the vast majority of people and commerce moves through the motor vehicle infrastructure, with micromobility sitting in the periphery. Additionally, given the current lack of commercial applications, there are limited direct fee-based funding mechanisms connected to micromobility form factors. Micromobility and the Next Infrastructure Wave discusses how recent technological innovations in electrification, e-commerce, and autonomy are enabling a new class of micromobility devices which offer palpable value to consumers and enable significant commercial applications. Unlike the past, these micromobility devices now have the scale, commercial funding, and operational economic value to justify a focused infrastructure effort. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2024022
This report examines the current interaction points between humans and autonomous systems, with a particular focus on advanced driver assistance systems (ADAS), the requirements for human-machine interfaces as imposed by human perception, and finally, the progress being made to close the gap. Autonomous technology has the potential to benefit personal transportation, last-mile delivery, logistics, and many other mobility applications enormously. In many of these applications, the mobility infrastructure is a shared resource in which all the players must cooperate. In fact, the driving task has been described as a “tango” where we—as humans—cooperate naturally to enable a robust transportation system. Can autonomous systems participate in this tango? Does that even make sense? And if so, how do we make it happen? Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020025
With billions of dollars of investment and events like DARPA’s Grand Challenges automated driving technology has been making its way toward commercialization. While the enabling technology for SAE Level 4 and 5 automated vehicles (AV) has not yet matured, specific restricted-use models such as “robo-taxis” and automated truck convoying show great promise. Now, cities are across the world are looking to AVs to solve their public transportation issues. With low speeds and fixed route, public transportation is an ideal application for AVs. From a business angle, AVs could leverage existing public transport models and infrastructure while providing superior quality of service for disadvantaged communities. Yet, dense urban environments—which would benefit from automated transportation the most—present unique challenges and public sector requirements. This SAE EDGE™ Research Report by Dr. Rahul Razdan examines the divergent applications and experiences of four urban cities as they engage with AV technology for their specific purposes: Jacksonville and Orlando, Florida; Tallinn; and Singapore. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020020
With over 100 years of operation, the current automobile industry has settled into an equilibrium with the development of methodologies, regulations, and processes for improving safety. In addition, a nearly $2-trillion market operates in the automotive ecosystem with connections into fields ranging from insurance to advertising. Enabling this ecosystem is a well-honed, tiered supply chain and an established development environment. Autonomous vehicle (AV) technology is a leap forward for the existing automotive industry; now the automobile is expected to manage perception and decision-making tasks. The safety technologies associated with these tasks were presented in an earlier SAE EDGE™ Research Report, “Unsettled Technology Areas in Autonomous Vehicle Test and Validation.” In a later SAE EDGE™ Research Report, “Unsettled Topics Concerning Automated Driving Systems and the Transportation Ecosystem,” senior executives from the automotive ecosystem explored the impact of AV technology as they faced the prospect of this disruptive technology entering their marketplace. Interestingly, stable use-models and market penetration were all gated primarily by the demonstration of AV safety. Building on these previous verification and validation (V&V)-related reports, “Unsettled Topics Concerning Automated Driving Systems and the Development Ecosystem” explores the open issues in the shift of the development and supplier environment toward a new AV-enabled future. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the challenges they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2020004
As automobiles morph from stand-alone mechanical objects to highly connected, autonomous systems with increasing amounts of electronic components. To manage these complex systems, some semblance of in-car decision-making is also being built and networked to a cloud architecture. This cloud can also enable even deeper capabilities within the broader automotive ecosystem. Unsettled Issues Regarding Autonomous Vehicles and Open-source Software introduces the impact of software in advanced automotive applications, the role of open-source communities in accelerating innovation, and the important topic of safety and cybersecurity. As electronic functionality is captured in software and a bigger percentage of that software is open-source code, some critical challenges arise concerning security and validation. https://doi.org/10.4271/EPR2021009
Over the last 100 years, the automobile has become integrated in a fundamental way into the broader economy. A broad and deep ecosystem has emerged, and critical components of this ecosystem include insurance, after-market services, automobile retail sales, automobile lending, energy suppliers (e.g., gas stations), medical services, advertising, lawyers, banking, public planners, and law enforcement. These components - which together represent almost $2 trillion of the U.S. economy - are in equilibrium based on the current capabilities of automotive technology. However, the advent of autonomous vehicles (AVs) and technologies like electrification have the potential to significantly disrupt the automotive ecosystem. The critical cog governing the rate and pace of this shift is the management of the test and verification of AVs. In this SAE EDGE™ report, six senior industry leaders in the impacted ecosystems essay articles which describe sectors of the current automotive ecosystem and the manner in which AV technology can potentially reshape them - providing a mosaic of the massive infrastructure shifts which will be required to absorb AV technologies. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019005
Automated driving system (ADS) technology and ADS-enabled/operated vehicles - commonly referred to as automated vehicles and autonomous vehicles (AVs) - have the potential to impact the world as significantly as the internal combustion engine. Successful ADS technologies could fundamentally transform the automotive industry, civil planning, the energy sector, and more. Rapid progress is being made in artificial intelligence (AI), which sits at the core of and forms the basis of ADS platforms. Consequently, autonomous capabilities such as those afforded by advanced driver assistance systems (ADAS) and other automation solutions are increasingly becoming available in the marketplace. To achieve highly or fully automated or autonomous capabilities, a major leap forward in the validation of these ADS technologies is required. Without this critical cog, helping to ensure the safety and reliability of these systems and platforms, the full capabilities of ADS technology will not be realized. This paper explores the ADS validation challenge by reviewing existing approaches and examining the effectiveness of those approaches, presenting critical techniques required to bring safe and effective solutions to market, discussing unsettled topics, and suggesting next steps for industry stakeholders to consider as they work to advance the ADS ecosystem. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019001
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.