Aggregation is the process of combining several numerical values into a single representative value, and an aggregation function performs this operation. These functions arise wherever aggregating information is important: applied and pure mathematics (probability, statistics, decision theory, functional equations), operations research, computer science, and many applied fields (economics and finance, pattern recognition and image processing, data fusion, etc.). This is a comprehensive, rigorous and self-contained exposition of aggregation functions. Classes of aggregation functions covered include triangular norms and conorms, copulas, means and averages, and those based on nonadditive integrals. The properties of each method, as well as their interpretation and analysis, are studied in depth, together with construction methods and practical identification methods. Special attention is given to the nature of scales on which values to be aggregated are defined (ordinal, interval, ratio, bipolar). It is an ideal introduction for graduate students and a unique resource for researchers.
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This book collects the contributions presented at AGOP 2019, the 10th International Summer School on Aggregation Operators, which took place in Olomouc (Czech Republic) in July 2019. It includes contributions on topics ranging from the theory and foundations of aggregation functions to their various applications. Aggregation functions have numerous applications, including, but not limited to, data fusion, statistics, image processing, and decision-making. They are usually defined as those functions that are monotone with respect to each input and that satisfy various natural boundary conditions. In particular settings, these conditions might be relaxed or otherwise customized according to the user's needs. Noteworthy classes of aggregation functions include means, t-norms and t-conorms, uninorms and nullnorms, copulas and fuzzy integrals (e.g., the Choquet and Sugeno integrals). This book provides a valuable overview of recent research trends in this area.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.