These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 {sect}1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx)
This textbook explores two distinct stochastic processes that evolve at random: weakly stationary processes and discrete parameter Markov processes. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. After recapping the essentials from Fourier analysis, the book begins with an introduction to the spectral representation of a stationary process. Topics in ergodic theory follow, including Birkhoff’s Ergodic Theorem and an introduction to dynamical systems. From here, the Markov property is assumed and the theory of discrete parameter Markov processes is explored on a general state space. Chapters cover a variety of topics, including birth–death chains, hitting probabilities and absorption, the representation of Markov processes as iterates of random maps, and large deviation theory for Markov processes. A chapter on geometric rates of convergence to equilibrium includes a splitting condition that captures the recurrence structure of certain iterated maps in a novel way. A selection of special topics concludes the book, including applications of large deviation theory, the FKG inequalities, coupling methods, and the Kalman filter. Featuring many short chapters and a modular design, this textbook offers an in-depth study of stationary and discrete-time Markov processes. Students and instructors alike will appreciate the accessible, example-driven approach and engaging exercises throughout. A single, graduate-level course in probability is assumed.
During the past 10 years, the Oil industry in India has seen a tremendous rise in exploration activity with several major E&P companies generating vast amount of new geological and geophysical data. The availability of such integrated data sets (gravity, magnetic, seismic, drilled wells), especially in the deep offshore basins, has led the authors to revisit earlier concepts and models in order to redefine the tectonic framework of major offshore basins along the Indian continental margins. The book covers the stratigraphic evolution, play types and the classification of major offshore basins both in shallow and deepwater environments. - Incorporation of latest dataset (specially the seismic, gravity and magnetic) - Analogy of global offshore basins with India - Sedimentation and depositional history of Bengal fan and Indus fan - Redefinition of major tectonic framework of the margins - Exceleent high quality graphics that include: seismic sections, gravity-magnetic maps, conceptual geological models and new revised tectonic elements
This book develops systematically and rigorously, yet in an expository and lively manner, the evolution of general random processes and their large time properties such as transience, recurrence, and convergence to steady states. The emphasis is on the most important classes of these processes from the viewpoint of theory as well as applications, namely, Markov processes. The book features very broad coverage of the most applicable aspects of stochastic processes, including sufficient material for self-contained courses on random walks in one and multiple dimensions; Markov chains in discrete and continuous times, including birth-death processes; Brownian motion and diffusions; stochastic optimization; and stochastic differential equations. This book is for graduate students in mathematics, statistics, science and engineering, and it may also be used as a reference by professionals in diverse fields whose work involves the application of probability.
This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.
Ideal for statisticians, this book will also interest probabilists, mathematicians, computer scientists, and morphometricians with mathematical training. It presents a systematic introduction to a general nonparametric theory of statistics on manifolds, with emphasis on manifolds of shapes. The theory has important applications in medical diagnostics, image analysis and machine vision.
This book describes novel methods for network-on-chip (NoC) design, using source-synchronous high-speed resonant clocks. The authors discuss NoCs from the bottom up, providing circuit level details, before providing architectural simulations. As a result, readers will get a complete picture of how a NoC can be designed and optimized. Using the methods described in this book, readers are enabled to design NoCs that are 5X better than existing approaches in terms of latency and throughput and can also sustain a significantly greater amount of traffic.
Introductory Probability is a pleasure to read and provides a fine answer to the question: How do you construct Brownian motion from scratch, given that you are a competent analyst? There are at least two ways to develop probability theory. The more familiar path is to treat it as its own discipline, and work from intuitive examples such as coin flips and conundrums such as the Monty Hall problem. An alternative is to first develop measure theory and analysis, and then add interpretation. Bhattacharya and Waymire take the second path.
These notes are based on lectures presented during the seminar on " Asymptotic Statistics" held at SchloB Reisensburg, Gunzburg, May 29-June 5, 1988. They consist of two parts, the theory of asymptotic expansions in statistics and probabilistic aspects of the asymptotic distribution theory in nonparametric statistics. Our intention is to provide a comprehensive presentation of these two subjects, leading from elementary facts to the advanced theory and recent results. Prospects for further research are also included. We would like to thank all participants for their stimulating discussions and their interest in the subjects, which made lecturing very pleasant. Special thanks are due H. Zimmer for her excellent typing. We would also like to take this opportunity to to express our thanks to the Gesellschaft fur mathematische Forschung and to the Deutsche Mathematiker Vereinigung, especially to Professor G. Fischer, for the opportunity to present these lectures and to the Birkhauser Verlag for the publication of these lecture notes. R. Bhattacharya, M. Denker Part I: Asymptotic Expansions in Statistics Rabi Bhattacharya 11 {sect}1. CRAMER-EDGEWORTH EXPANSIONS Let Q be a probability measure on (IRk, B"), B" denoting the Borel sigmafield on IR". Assume that the s - th absolute moment of Q is finite, (1.1) P. := J II x lis Q(dx)
This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.
This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.