Mathematical Aspects of Scheduling and Applications addresses the perennial problem of optimal utilization of finite resources in the accomplishment of an assortment of tasks or objectives. The book provides ways to uncover the core of these problems, presents them in mathematical terms, and devises mathematical solutions for them. The book consists of 12 chapters. Chapter 1 deals with network problems, the shortest path problem, and applications to control theory. Chapter 2 stresses the role and use of computers based on the decision-making problems outlined in the preceding chapter. Chapter 3 classifies scheduling problems and their solution approaches. Chapters 4 to 6 discuss machine sequencing problems and techniques. Chapter 5 tackles capacity expansion problems and introduces the technique of embedded state space dynamic programming for reducing dimensionality so that larger problems can be solved. Chapter 6 then examines an important class of network problems with non-serial phase structures and exploits dimensionality reduction techniques, such as the pseudo-stage concept, branch compression, and optimal order elimination methods to solve large-scale, nonlinear network scheduling problems. Chapters 7 to 11 consider the flow-shop scheduling problem under different objectives and constraints. Chapter 12 discusses the job-shop-scheduling problem. The book will be useful to economists, planners, and graduate students in the fields of mathematics, operations research, management science, computer science, and engineering.
Since the elassie work on inequalities by HARDY, LITTLEWOOD, and P6LYA in 1934, an enonnous amount of effort has been devoted to the sharpening and extension of the elassieal inequalities, to the discovery of new types of inequalities, and to the application of inqualities in many parts of analysis. As examples, let us eite the fields of ordinary and partial differential equations, whieh are dominated by inequalities and variational prineiples involving functions and their derivatives; the many applications of linear inequalities to game theory and mathe matieal economics, which have triggered a renewed interest in con vexity and moment-space theory; and the growing uses of digital com puters, which have given impetus to a systematie study of error esti mates involving much sophisticated matrix theory and operator theory. The results presented in the following pages reflect to some extent these ramifications of inequalities into contiguous regions of analysis, but to a greater extent our concem is with inequalities in their native habitat. Since it is elearly impossible to give a connected account of the burst of analytic activity of the last twenty-five years centering about inequalities, we have d. eeided to limit our attention to those topies that have particularly delighted and intrigued us, and to the study of whieh we have contributed.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.