Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging research topic. View-based 3-D Object Retrieval introduces and discusses the fundamental challenges in view-based 3-D object retrieval, proposes a collection of selected state-of-the-art methods for accomplishing this task developed by the authors, and summarizes recent achievements in view-based 3-D object retrieval. Part I presents an Introduction to View-based 3-D Object Retrieval, Part II discusses View Extraction, Selection, and Representation, Part III provides a deep dive into View-Based 3-D Object Comparison, and Part IV looks at future research and developments including Big Data application and geographical location-based applications. - Systematically introduces view-based 3-D object retrieval, including problem definitions and settings, methodologies, and benchmark testing beds - Discusses several key challenges in view-based 3-D object retrieval, and introduces the state-of-the-art solutions - Presents the progression from general image retrieval techniques to view-based 3-D object retrieval - Introduces future research efforts in the areas of Big Data, feature extraction, and geographical location-based applications
This open access book discusses the theory and methods of hypergraph computation. Many underlying relationships among data can be represented using graphs, for example in the areas including computer vision, molecular chemistry, molecular biology, etc. In the last decade, methods like graph-based learning and neural network methods have been developed to process such data, they are particularly suitable for handling relational learning tasks. In many real-world problems, however, relationships among the objects of our interest are more complex than pair-wise. Naively squeezing the complex relationships into pairwise ones will inevitably lead to loss of information which can be expected valuable for learning tasks. Hypergraph, as a generation of graph, has shown superior performance on modelling complex correlations compared with graph. Recent years have witnessed a great popularity of researches on hypergraph-related AI methods, which have been used in computer vision, social media analysis, etc. We summarize these attempts as a new computing paradigm, called hypergraph computation, which is to formulate the high-order correlations underneath the data using hypergraph, and then conduct semantic computing on the hypergraph for different applications. The content of this book consists of hypergraph computation paradigms, hypergraph modelling, hypergraph structure evolution, hypergraph neural networks, and applications of hypergraph computation in different fields. We further summarize recent achievements and future directions on hypergraph computation in this book.
Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging research topic. View-based 3-D Object Retrieval introduces and discusses the fundamental challenges in view-based 3-D object retrieval, proposes a collection of selected state-of-the-art methods for accomplishing this task developed by the authors, and summarizes recent achievements in view-based 3-D object retrieval. Part I presents an Introduction to View-based 3-D Object Retrieval, Part II discusses View Extraction, Selection, and Representation, Part III provides a deep dive into View-Based 3-D Object Comparison, and Part IV looks at future research and developments including Big Data application and geographical location-based applications. - Systematically introduces view-based 3-D object retrieval, including problem definitions and settings, methodologies, and benchmark testing beds - Discusses several key challenges in view-based 3-D object retrieval, and introduces the state-of-the-art solutions - Presents the progression from general image retrieval techniques to view-based 3-D object retrieval - Introduces future research efforts in the areas of Big Data, feature extraction, and geographical location-based applications
Learning-Based Local Visual Representation and Indexing, reviews the state-of-the-art in visual content representation and indexing, introduces cutting-edge techniques in learning based visual representation, and discusses emerging topics in visual local representation, and introduces the most recent advances in content-based visual search techniques. - Discusses state-of-the-art procedures in learning-based local visual representation. - Shows how to master the basic techniques needed for building a large-scale visual search engine and indexing system - Provides insight into how machine learning techniques can be leveraged to refine the visual recognition system, especially in the part of visual feature representation.
Learning-Based Local Visual Representation and Indexing, reviews the state-of-the-art in visual content representation and indexing, introduces cutting-edge techniques in learning based visual representation, and discusses emerging topics in visual local representation, and introduces the most recent advances in content-based visual search techniques. - Discusses state-of-the-art procedures in learning-based local visual representation. - Shows how to master the basic techniques needed for building a large-scale visual search engine and indexing system - Provides insight into how machine learning techniques can be leveraged to refine the visual recognition system, especially in the part of visual feature representation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.